
Simulating Using ns-2

 Ankit Verma*
 Chandan Kumar**

 Meenakshi Vyas***

1. Introduction: ns-2 is called event simulator because ns-2 simulator has list of
events. Process includes beginning of event and run it until it is finished. After the
completion of one event, another event starts. Each event happens in a short period of
time [1]. ns-2 is an object oriented simulator, written in C++, with an OTcl interpreter as
a front-end. The simulator supports a class hierarchy in C++ and a similar class hierarchy
within the OTcl interpreter. The two hierarchies are closely related to each other. There is
a one-to-one correspondence between a class in the interpreted hierarchy and compiled
hierarchy [2]. The root of this hierarchy is the class Tcl Object. ns-2 uses two languages
because simulator has two different kinds of things it needs to do. On one hand, detailed
simulation of protocols requires a systems programming language which can efficiently
manipulate bytes, packet headers, and implement algorithms that run over large data sets.

 ns-2 meets both of these needs with two languages, C++ and OTcl. C++ is fast to run but
slower to change, making it suitable for detailed protocol implementation. OTcl runs
much slower but can be changed very quickly. ns-2 is a event scheduler and all events are
handled under c++ compiled hierarchy. The scheduler keeps ordered data structure and
executes them one by one. Commands for simulation is written in tcl language (Tool
command language), it is used because it is a language with a very simple syntax and
allows very easy linking with other [2].

2. Simulation Using ns-2: Simulation using ns-2 involves five important steps:

A. Creating the event scheduler:-ns-2 is a discrete event network simulator. The

scheduler runs by selecting the next earliest event, executing it until its completion
and returns to execute the next event. Unit of time used by scheduler is seconds if
more than one event is scheduled to execute at same time, then their execution is
performed on first scheduled first dispatched manner [1].

B. Creating network:-Creating network requires two important steps i,e.

• Creating nodes:-one aspect of creating a topology in ns-2, i.e., creating the
nodes. The class provides instance procedures to create and manage the topology,
and internally stores references to each element of the topology[1].
• Creating link :- This is the second aspect of defining the topology ns-2 supports a
variety of other media, including an emulation of a multi-access LAN using a mesh
of simple links, and other true simulation of wireless and broadcast media. The
CBQlink is derived from simple links and is considerably more complex form of
link, as with the node being composed of classifiers, a simple link is built up from a
sequence of connectors [1].

*Maharaja Ranjit Singh College of Professional Sciences, Indore, India

C. Creating routes:-There are basically two types of routing:
• Unicast routing:-The user level simulation script requires one command to
specify the unicast routing strategy or protocols for the simulation[1]. A routing
strategy is a general mechanism by which ns-2 will compute routes for the
simulation .There are four routing strategies in ns-2: Static, Session, Dynamic and
Manual[5]. Conversely, a routing protocol is a realization of a specific algorithm.
Currently, Static and Session routing use the Dijkstra’s all-pairs SPF algorithm; one
type of dynamic routing strategy is currently implemented: the Distributed
Bellman-Ford algorithm in ns-2, we blur the distinction between strategy and
protocol for static and session routing, considering them simply as protocols1.
rtproto{} is the instance procedure in the class Simulator that specifies the unicast
routing protocol to be used in the simulation [2].
• Multicast routing:-Multicast forwarding requires enhancements to the nodes and
links in the topology. Therefore, the user must specify multicast requirements to the
Simulator class before creating the topology when multicast extensions are thus
enabled, nodes will be created with additional classifiers and replicators for
multicast forwarding and links will contain elements to assign incoming interface
labels to all packets entering a node[1]. A multicast routing strategy is the
mechanism by which the multicast distribution tree is computed in the simulation.
ns-2 support three multicast route computation strategies: centralized, dense mode
(DM) or shared tree mode (ST). The method mrtproto{} in the Class Simulator
specifies either the route computation strategy, for centralized multicast routing, or
the specific detailed multicast routing protocol that should be used[1].

D. Creating traffic:-After defining nodes and links between we should now we make
a traffic flow through them for that we need to define routing, the agent and
application that uses them. The two agents that we frequently use in simulation are:

• UDP:-A UDP agent accepts data in variable size chunks from an application, and
segments the data if needed. UDP packets also contain a monotonically increasing
sequence number and an RTP timestamp. Although real UDP packets do not
contain sequence numbers or timestamps, this sequence number does not incur any
simulated overhead, and can be useful for trace file analysis or for simulating UDP-
based applications. The default maximum segment size (MSS) for UDP agents is
1000 byte[7].
• TCP:-There are two major types of TCP agents: one-way agents and a two-way
agent. One-way agents are further subdivided into a set of TCP senders (which obey
different congestion and error control techniques) and receivers (“sinks”). The two-
way agent is symmetric in the sense that it represents both a sender and receiver[2].

3. Example of Simulation to obtain 2 node network.
set ns [new Simulator]
set tf [open out.tr w] #creation of trace file
$ns trace-all $tf
set nf [open out.nam w]

$ns namtrace-all $nf
set qsize [open queueSize.tr w]
set n0 [$ns node] # creation of node
set n1 [$ns node]
$n0 color red
$n1 color blue
$ns duplex-link $n0 $n1 5Mb 10ms Drop Tail # creating link between the node
$ns duplex-link-op $n0 $n1 orient Right
set Number Flow 200
$ns queue-limit $n0 $n1 20
set tcpscr [new Agent/TCP] #setting TCP agent
$ns attach-agent $n0 $tcpscr
set sink [new Agent/TCPSink]
$ns attach-agent $n1 $sink
set ftp [$tcpscr attach-source/FTP]
set rng1 [new RNG]
$rng seed 0
sey rng2 [new RNG]
$rng2 seed 0
set RV [new RandomVariable/Exponential]
$RVSize set avg_0.045
$RVSize use.rng $rng1
set RVSize [new RandomVariable/Pareto]
$RVSize set avg_10000
$RVSize set shape_1.5
$RVSize use.rng $rng2
set t [$ns now]
$ftp set PacketSize 1000
$ftp set Interval 5
$ns connect $tcpscr $sink
$tcpscr set window_2000
Proc finish{}{
global ns nf qsize
$ns flush-trace
close $qsize
exec xgraph queueSize.tr.geometry 800*400.t “queue size”_x”sec”_y”#packet” & exit
0}
set qfile [$ns monitor-queue $no $n1 [open queue.tr w] 0..5]
#[$ns link $n0 $n1]queue.sample.timeout;
Proc record{}{
global ns qfile qsize n0 n1
set time 0.05
set now [$ns now]
$qfile instvar parrival_pdeparture_bdrops_bdepartures_pdrops_
puts $qsize “$now [expr $Parrival_$Pdaparture_$Pdrops]
set Pdepartures_0

$ns at [expr $now+$time]”record
 }
$ns at 0.0 “record”
$ns at 0.1 “$ftp start”
$ns at 4 “$ftp stop”
$ns at 5 “finish”
$ns run

4. Result and Analysis: First we have created two nodes. And after simulation trace
file and calculation of
Delay - the average amount of time it takes an access point to start receiving a multicast
transmission starting with the “join-group” being sent.
Packet loss – the average amount of data lost in a move between access points. (for a
CBR source this is very similar to delay measurements) .
Overhead - the percentage of control messages out of overall traffic on the lines (i.e.
control bits/overall bits)[3].

From the above figure we deduce that two node has been created and a link is established
between them.

In the above figure we can see packets movement between two nodes.

Above figure is the result of the simulation which shows the graph of queue size in
which packets are increased gradually up to 40000 secs, and become constant from
40000 secs onwards. Result data can be seen in tracefile named queuesize.tr.

5. Conclusion: ns-2 is a popular simulator among the researchers for analyzing the
performance of protocols both in wired and wireless networks. This paper describes the
simulator in brief and presents an example script for two node network. The two
dimensional graph drawn using xgraph utility of the simulator shows the number of
packets in queue with time. Similarly, many parameters like packet transfer between
nodes, packet loss, throughput, end to end delay etc. can be seen graphically. We can also
increase or decrease the data rate, step size, number of nodes etc. to know the
performance of network in different conditions.

6. References:
1. http://www.isi.edu/nsnam/ns/tutorial/index.html # formely ns manual
2. Ns Simulator for beginners Lectures notes,Univ de Los Andes, Merida , Venezuela and

ESSI, Sophia-Antipolis, France.
3. http://comnet.technion.ac.il/~cn02w04/
4. Marc Greis's tutorial maintained by VINT group.
5. http://en.wikipedia.org/wiki/Ns_simulator
6. T. Issariyakul and E.Hossain, Introduction to Network Simulator ns2, Springer.

