
Grid Computing : A Virtual Organization

V.K. Saxena*

Abstract

It is a great challenge for the scientific community to provide information online with low
prices in this era of competition. In today’s world computer users are globally located.
The grid is essentially a heterogeneous collection of computational and storage resources,
thereby leading to many related challenges. These challenges require dealing with
diversity in the terms of local resources, dynamic nature of the local resources, creation
and management of services and maintaining the Quality of Service (QoS). Since grid is
inherently a parallel and distributed system, the key issues regarding design of the grid,
data locality and availability, implementation, scalability, anatomy, privacy, maintenance,
fault tolerance, security, etc come into picture and need to be addressed. These issues
demand new technical approaches for the grid environment.

Keywords: Computational Grid, Virtual Organization (VO), Scheduling, Fault Tolerance
Security, Economics.

1. Introduction: Grids are finding applications in various fields in the form of Data grids,
Computational grids, Science grids, Bio grids etc. To define what is a grid and who do
not qualify as a grid, it can be established that a grid is a system that

(a) has coordinated resource sharing that are not subjected to centralized control
(b) uses standard, open, general purpose protocols and interfaces and
(c) delivers non-trivial qualities of service.

Going by this definition cluster computing, web services etc do not fall into the category
of grids. This is because clusters are owned by a single organization whereas web only
provides a standard infrastructure for data exchange between two distributed applications
and does not account for the aggregation of resources unlike the grid. As well web is a
client - server computing system that is not intended to solve large scale problems in a
distributed manner. One more question of paramount importance is what are the
problems best suited to be solved over the grid? For the purpose, nature of the
application, its domain and its suitability over the grid needs to be explored i.e., whether
the application demands high throughput or distributed supercomputing or data intensive
or collaborative engineering etc. Since a grid is a distributed system, the programming
models and tools also need rethinking so as to develop suitable algorithms and software
architecture for mapping over the complex grid architecture. As the grid involves
heterogeneous resources, a method regarding the resource management should also be in
place with efficient security measures taken to safeguard the applications due to the
interaction not only between two entities but many entities, involved in collective
operations.

*System Engineer, Institute of Computer Science, Vikram University, Ujjain (M.P.) India

2. Typical grid computing environment

3. Issues in computational grid scheduling : This section covers and analyzes the

available computational grid models, their features and what more is expected of them.

3.1 Computational grid models: Since scheduling on a grid is a NP hard
problem, a number of models addressing one or the other issues related to
scheduling have been proposed in literature. There are many approaches that
concentrate only on the scheduling aspects while the others may focus on aspects
like reliability, security and/or fault tolerance. Thus there are a number of models
each addressing one issue or the other.

In the centralized super scheduler architecture, a job super scheduler is designed
to schedule the jobs for the individual nodes. In that model a few issues remain
unaddressed. Since the super scheduler does not have the control over the
resources of the distributed computing centers it depends on the individual local
batch-queuing systems to initiate and manage job execution. But this structure
proves to be a bottleneck due to centralized queuing and dispatch. What should be
the super scheduling algorithm is not specified. How the interaction between
super scheduler and local scheduler will take place is an important issue but has
not been addressed. Even a policy of job selection and migration and the
destination choice for the transferred jobs is not there.

In the distributed super scheduler architecture some super scheduling policies are
proposed but the notable point is that the allocation criterion is not biased keeping
in mind the nature of the job. It is not specified how the approximate execution
time for the job is checked at various nodes / clusters. The model only checks for
the approximate waiting time for the job awaiting execution in the local queue
rather than estimating the execution time at that node in addition to the waiting

time. How much is the resource requirement is not specified. Further the super
scheduler scalability and fault tolerance issues need to be addressed.

The TITAN architecture basically deals with the local scheduling at the node level
and is operative with Globus Toolkit only, making its use restrictive. It accounts
for the submission of the whole job to a group of nodes and then finding its
suitability for that job. If the request is not met at the current broker level it is
passed on to the next broker up in the hierarchy level. Thus it does not account for
the simultaneous assessment of the feasibility. Further, resources are accessed
irrespective of the fact that they meet the job specialization or not making the
search space wider. Using PACE they calculate the task’s execution time but how
the mapping of the task to nodes is done is not specified.

Further it must be noted that the grid scheduling algorithms schedules the job over
the grid resources but what is the scenario for the local scheduling at the node
level remains unaddressed. Whether the scheduler has any control over the
scheduling policies of the local nodes are equally important and should also be
considered. One factor that influences the local scheduling policies is the priority
assigned to the job since then the preemptive or non preemptive nature of the
scheduling policies locally will effect the turnaround time of the job.

Some of the current grid schedulers Nimrod-G, GRaDS, Condor-G, Legion etc
assume one entry point into the grid as the new job which has entered will make
itself known to the resource selector which will schedule it on a processor. This
single entry point serves as a bottleneck. They have a limitation in the fact that
even the information gathering system is centralized here. Due to this, scalability
of the system also gets restricted. The description of resources is also coarse
grained in many available schedulers and they mostly check for the availability of
the system or the workstation and does not provide any information about the
attributes of the workstation like the number of processors and their speed, OS
type, slot available for each process, available memory for execution etc. While
distributing the job over the nodes they even do not consider the nature of the job,
which is a critical attribute for any job to be executed on a heterogeneous
environment like the grid. Further, they all assume to have control over the
scheduling policy of the individual nodes, which is in fact not always possible.

3.2 Role of the end system: End system plays a major part in the grid system
as today’s end systems are relatively small and they are connected to networks by
interfaces and with operating system mechanisms that are originally designed for
reading and writing slow disks. Thus these end systems needs to be developed
supporting high performance networking grid architecture.

3.3 Job pre processing requirements: Once the grid comes into existence
there may be a number of virtual organizations (VO) forming the grid. Whenever
a query enters the grid it enters through the corresponding virtual organization
only. Therefore resource management also needs to be addressed as it is difficult

to have common grid architecture since they are created to cater to different needs
but at least a basic set of services need to be identified for ex. Querying,
Submitting and Monitoring. Any process to succeed on a grid might proceed by

• Obtaining the necessary authentication credentials (connectivity layer protocols):
The user should be authenticated for entering the grid. This can be done by the use of
password or certificates. For this, a password may be given to the authorized users
keeping in mind the security of the user keys. Security measures like PKINIT and
Kerberos, used for wide area networks may be useful for the purpose. The credential
processing service may handle the processing and validating authentication tokens. In
addition to the above, since various organizations and resources are involved in the
problem solving, the grid should require only a single sign in facility for the user.

• Querying information (collective services): Since a grid is a dynamic system it should
be updated to keep track of the changes occurring inside it. A replica catalog could be
used to determine availability of the resources like computers, storage systems,
networks and the location of required input files. This information should be dynamic
and should be updated from time to time, whenever a job completes its execution or
any resource participates or quits the grid. Mechanism of discovering resources on the
grid is itself a challenging task for the designer. In the old schemes some centralized
services, for e.g. Condor matchmaker were used that contained all the information.
But it had the problem of scalability and single point failure. Later decentralized
schemes were used e.g., MDS – 2 where the grid information is stored and indexed by
index servers that communicate via registered protocols. The best approach is to have
the information available to all the virtual organizations about the resource status so
that accordingly load balancing can be done. Thus we require that each virtual
organization should have the latest updated resource information for efficient grid
utilization.

• Submitting requests (resource protocols): Keeping in mind the heterogeneity of the
grid the request should be submitted to appropriate computers, storage systems, and
networks to initiate computations, move data and so on and so forth. Here it is worth
mentioning that high selectivity in the resources has an advantage of the best possible
allocation but may lead to lower probability match. As well high regionalism may
lead to non uniform distribution of the tasks but will reduce the communication cost.
Selectivity depends on the nature of the job whereas regionalism is governed by how
much communication overhead and network delays we can tolerate. Both these
factors depend on the existing load structure on the grid. Thus it should be decided
that what level of selectivity and regionalism is required in the grid? After submitting
the request the authorization service may evaluate the service requirements of the task
by gathering information about the requestor and the target. In addition access control
should also be exercised as the users are working in the shared environment since
there can be a number of resources over which the owner wants to have its complete
authority.

• Monitoring resources and computations (resource protocols): The progress of the
various computations and data transfers needs to be monitored necessarily. This could
be done by using means such as heartbeat or check pointing, notifying the user when
all are completed, and detecting and responding to failure conditions. This brings into

picture, security and fault tolerance of the grid. The grid should be able to safeguard
the information about a participant’s data from the other. Since large numbers of
virtual organizations are part of the grid, it means large numbers of resources are to
be monitored and tracked for various failures that may takes place. These failures
may range from submission failure to hardware/software failures. The grid should be
able to meet these failures gracefully in a reactive or proactive manner. Apart from
the basic monitoring services offered by the grid one more factor that needs proper
attention is the QoS (Quality of service) offered by the grid. The common
specifications in this regard could be whether events are delivered reliably or
unreliably and whether they are in order or out of order, network delays involved
robustness of the system etc.

3.4 Allocation requirements: Since the grid is a distributed environment
certain points need to be noted regarding the allocation aspects. Some of these could
be

• Services: The first important thing is that how many services the Grid has been
designed to cater to i.e. is the grid designed to address a single issue or it involves
many like minimum turn around time as well as real time with fault tolerance?

• Scalability: Till what extent the grid is scalable?
• Topology: What are the entry point’s restrictions for the job i.e. does the grids have

the ability for multipoint entry of the job? In other words whether the job services are
centralized or distributed?

• Nature of the job: Once the job is submitted it should be sent to the suitable resources
and the result should be sent back to the calling resource. To harness the advantages
of a grid, proper load balancing should be taken into account. It is worth mentioning
here that whether the load balancing and distribution of the task over the grid takes
into account the nature of the job? Or in other words how to find the best possible
resource for the task of a given nature?

• Effect of existing load: Most previous task allocation algorithms have assumed
assignment of modules of only a single task to nodes. Therefore the execution time of
a particular module on a particular processor cannot be taken as the cumulative time
taken by it.

• Number of modules allocated: Should there a limit to the modules assigned to a
particular processor? Here we need to keep in mind that now memory is no longer a
constraint because of the integration technology becoming better and better.

• Load balancing: If the tasks are spread over the grid to exploit the parallelism then
what should be the load balancing strategy? Is it the same for every task? Or
otherwise how a strategy is adopted when the nature of the task changes.

• Parallelism: Even the parallelism of the job is considered to be at the fine grain level
or the coarse grain level should be noted carefully. Whether this parallelism is
assumed to be attained after the job submission or is inherent in the job with already
preprocessed form, as mentioned earlier, with the job submitted in the ready to
execute parallel form?

• Interactive task handling: The grid should be able to handle many tasks which are
interactive in nature. Here a module can be allocated by knowing the outcome of the

task till one stage. The grid should be able enough to support these kinds of jobs
efficiently. One possible solution to this problem is to treat the task in the same way
as a modular task, have a Job Precedence and Dependence Graph (JPDG) with the
user interaction dependent data being treated as dependence between two stages or
modules.

• Job migration policy: Is the grid able to support real time tasks and what should be
the preemptive strategy if they are entertained? What should be the migration policy
in case a job needs to be moved over to another node because of the preemptive
action or on account of the node failure?

• Channel load: The task allocation models do not consider the load on the channel,
whereas in a practical grid like situation there is a possibility of traffic on the channel
resulting in further delay on the data traveling.

• Checkpoints location: In case of failure check where should the checkpoints be
placed and how should the checkpoint activity be performed? How the checkpoint
activity effects the system performance should be carefully considered.

• Redundant resource selection: What should be the degree of redundancy in the form
of task replication or resource replication? In case of failure what should be the
criterion of node selection having task replica? How the system performance is
effected by it needs to be studied properly.

• Restricted access: Almost all the grid scheduling models assume that any job can be
allocated to the suitable resource. Normally it is not the case in real life scenario as a
local organization may not wish to give access to all of its resources to the third party
directly as it may wish to exercise some control over its resources for security and
protection reasons or for any restricted access. For the purpose, allocation can be
done via a local centralized system resulting in two tier architecture of the grid. The
first tier is the super-scheduler, which allocates the job to a virtual organization or an
organization inside the virtual organization, which then schedules the job internally.

3.5 Real time systems: For real time jobs the condition becomes much more
complex since now the job has to be seen from the point of view that whether it is
possible to schedule it or not. Thus for these type of jobs, the requirements are that
the jobs should have predictable end time. For the case of composite jobs, a complex
set of sub jobs must be orchestrated in such a way as to respect any dependence
between sub jobs. The real time processing also demands co scheduling i.e.
scheduling of multiple resources for the same precise time. Proper brokering to select
best resource is equally important. What are the Service Level Agreement (SLA)
requirements needs to be taken care of and renegotiated as compute and other
resources may fail unpredictably or the sub jobs may fail due to user error or high
priority jobs may be submitted. Thus SLA should also be constantly added, altered or
withdrawn and hence scheduling would need to be continual dynamic and uncertain
process. Finally, strategies should be decided for the jobs that do not meet the
deadline i.e., whether they should be deferred or accepted with whatever best the grid
could offer to it.

4. Reliability and fault tolerance in computational grid: Apart from all the issues
relating to maintaining the QoS and secured communication we always wish to have a

system in place that is reliable and able to digest system failures. Significantly incorrect
performance of the computers may lead to several devastating effects. A fault tolerant
system is one, which continues to perform even in the presence of hardware and software
faults. A fault is a physical defect, imperfection, or flaw that occurs within some
hardware or software component whereas an error is the manifestation of a fault and is
any deviation from accuracy or incorrectness. Specifically, faults are the cause of errors
and errors are the cause of failures.

Whenever a task enters the grid for execution the failure chances may spread from the
application failure at the point of submission to the resource failure to the node failure.
Faults can be the result of many things viz. specification mistake (incorrect algorithms,
architectures etc.) hardware failures (hot crash, network partition etc.), software failure
(numerical exception, failed application etc.), implementation mistakes (inefficient
algorithm), component defects, external disturbances (radiation, electromagnetic waves,
interference etc.), performance failures (application not completing within a specified
time etc.) or some other failures (machine rebooted by the owner, excessive CPU load,
decreased priority by the local resource for the current task etc.) At the level of grids
depending on the type of grid it may be prone to either or all of the faults.
• Proactive approach: One approach towards handling the faults is to avoid their

occurrence. Fault avoidance can be used in the case of grids to prevent the occurrence
of faults and includes design reviews, testing or other ensuring measures. This is
actually a proactive approach which mostly deals with the analysis, design and testing
to check the possible failures so that they do not occur.

• Proactive approach using agents: Even when the system is thoroughly tested for the
above mentioned parameters there is always a possibility of failure. The proactive
approach using multiple agents can be used here by continuously monitoring the
system by checking some important parameters for their values to be within the
permissible limit. The system continues doing so if the checked value lies within the
permissible limit else it will take a note of it by prompting the system to take
necessary action that will prevent the damage. We may have one useful approach in
which we may use agents to check for various possible failures depending on few
noted parameters like Mean Time to Failure (MTTF), Mean Time Between Failures
(MTBF), system uptime, age etc., and give a score to the concerned resource.
Accordingly, whenever the system feels that the resource or a computation is entering
a danger zone where a failure may take place, it preempts the application to start
afresh on the same or different available resource. For example the Memory Usage
Monitor agent (MMA), keeps a check on the memory usage and if it feels that the
usage is exceeding the threshold it reinitiates the job on a different node. Similarly we
can have a different number of agents to keep watch on the hardware, application
operating system, network or response time.

• Reactive approach: Since faults can be in many forms and can occur at any time so
the grid should be able enough to cope with such a scenario by using the fault
masking approach in which it should detect and locate the fault and reconfigure the
system or restart from the checkpoint. These checkpoints should be placed
concurrently during the program execution rather than blocking the program and then
check pointing. Further, fault containment approaches should be used to isolate the

fault from propagating throughout the system. For e.g. if a node has crashed a
message should be propagated to isolate that node from the healthy resources.

• Redundancy: Introduction of redundancy by various means is one of the measures
taken for increasing the fault tolerant appetite of the grids. This is done by duplicating
the resources i.e., hardware redundancy or by having application run at more than one
place in a different manner i.e., software redundancy or having the information stored
at more than one places as backup or information redundancy or by having same
application run at the same time at different resources or time redundancy.
Primary- backup technique is one of the proposed approaches that can be used for the
grids. The client may interact with one replica and can start interaction with the other
one if the first replica fails. This requires the two replicas to be consistent with each
other. Therefore the primary should not acknowledge the client till it is sure that all
the back up’s have been updated. This approach is best suited for crashes and
message loss but not for arbitrary failures. For example, if the failure is due to faulty
algorithm then even the back ups are not of any use. Rather it will increase the
complexity of the system.

• Recovery from failure: In addition to the above considerations of the types of failures
to which the grid is prone one has to keep in mind the heterogeneous nature of the
grid as well as the tasks for designing the recovery mechanism. This is because of the
fact that each task has its own failure semantics having failure definitions and
strategies to handle it. For e.g., a real time application may desire to finish in a
specific time. For e.g. if it is not done due to node failure, it could be restarted on the
same or other resource or even replicated to meet further failures whereas for some
other task it may not work for which the reason of failure was improper algorithm.
Thus, we need to have a task specific failure handling rather than the conventional
failure independent policies in which the failures are rather homogeneous in nature,
which need almost the same treatment as in the case of, distributed transactional
databases where the recovery method is logging and rollback. the failure handling
should be user specific as well i.e., it should be able to support the recovery method
suggested by the user in the form of exceptions. Considering these facts we may have
a task level recovery techniques that are used at the task levels to undue the effect of
failure or workflow level techniques specifying the failure recovery at the application
level. At the task level it includes retrying in the hope that the same cause of failure
may not happen again, check pointing so that we do not need to start from the
beginning but at the marked checkpoint using checkpoint libraries such as Dome,
Fail-safe PVM, CoCheck etc., for parallel working platforms and Libckpt, Condor
checkpoint library for standalone machines and adding redundancy as replication
with more than one tasks running at parallel guaranteeing at least one successful
execution. At the workflow level it includes alternative task in which we have more
than one available implementation scheme for a certain task or workflow redundancy
with many versions of tasks running in parallel.

• Grid reliability modeling : More the fault tolerance of the system, more reliable it is.
The system reliability can be determined and modeled by either combinatorial
approach by using probabilistic techniques or by using Markov modeling by
representing the grid as a collection of states and state transitions.

5. Dynamic nature of the grid and security: Since the Virtual organizations
comprises of a group of individuals and associated resources and services but not located
within a single administrative domain for security reasons, a variety of issues relating to
certification, group membership, and authorization also need to be addressed. These may
range from security of the application to the safety of the data involved with it. As well,
since the constituents of grid itself are changing, the grid should be able enough to live up
by adapting to the security requirements of this dynamic environment.
• Dynamic nature of the VO: The virtual organizations themselves are dynamic due to

the fact that even new services may be deployed or removed in the virtual
organization at any time. It may range from a long lived collaboration for e.g.,
scientific grid while the other may involve a very short lived collaboration including
two individuals sharing some documents for the purpose of a proposal making. Thus
the user should be able to create new services dynamically without administrator
intervention. These services should be capable enough to coordinate and interact
securely with other services. For this purpose, the grid needs to establish a trust
domain among the participants as well as its own resources.

• Security specification: Here the security issue is more complicated as compared to the
simple client-server mechanism since in this case the parallel computation ranges to a
large number of processors involving even a large number of resources supporting
them. Adding to complexity is the fact that the resources may be in different
administrative domains. We need to establish trust between these domains. In order to
establish trust the two entities need to find out a common set of security mechanisms
that both understand. Integration of GSI (Grid Security Infrastructure) over the OGSA
(Open Grid Services Architecture) enables the use of Web Services techniques to
express and publish policy [16] allowing applications to determine automatically
what security policies and mechanisms are required of them along with the interface
specification, token formats etc., and gather them to participate in the grid for
problem solving. The dynamic nature of the grid even makes it a difficult job as the
trust can’t be ascertained prior to the application execution.

• Protection of applications and resources: Security of the data and application over
the grid is very important since the grid involves the participation of many
organizations with data flowing between these organizations. Data security is
important even when staged on the grid resource. Proper measures should be
ascertained to safeguard data used in the grid against active and passive intrusions for
the purpose of message protection. One of the possible solutions is to encrypt the data
before transmission. As well provisions should be there that the data should be
secured even from the current resource on which it is used which is not in fact the
owner of that data. The operating systems may help for this problem by defining a set
of permissions as in the case of UNIX. For the case of a single organization grid the
cluster resource management such as Sun Grid Engine (SGE) could be used to
provide mechanism for the shared use and within the completion deadline of the
tasks.

• Compliance with the existing security standards: We should not forget that the
participants in a VO also have their own security arrangements in which they have
invested a good enough sum. So the grid security measures should comply with them
and interoperate rather than replacing them. Whatever security mechanisms are

incorporated should not be on the static basis in the form of patches. The grid should
be dynamic in the sense of adapting to the new security measures changes. Since the
grid participants have different trust domains the credential conversion service may
be used for both the parties to comply with. In addition Audit trail may be used to
securely log the events that occur in the virtual organization of the grid.

The Globus Toolkit for example uses a common credential format based on X.509
identity certificates, which in conjunction with an associated private key forms a
unique credential set that a grid entity may use to authenticate itself to the other grid
entities. The Transport Layer Security (TLS) based protocol is used to perform
authentication and then provide message protection. The Kerberos Certificate
Authority (KCA) and PKINIT provide translation from Kerberos to GSI and vice
versa for the purpose of credential conversions.

6. Grid Economics: Since grid enables its users to share resources within and
between organizations it offers attractive value proposition in terms of efficiency and
flexibility. But this sharing comes with a price thus bringing all the financial issues
related with the grid business into the picture. From the business point of view the grid
manager would try to extract the maximum value out of the available resources. Some of
the core issues related to grid economics could be

• Avoid the tragedy of the commons: Since the grid is a shared resource one should
always keep in mind that “who gets what, when and how much?” If the grid
resources are allowed to be accessed in a free uncontrolled manner, the use could
result in someone holding the resources for an undesired amount of time thus
prohibiting the others to take advantage of the grid resources. This is called the
tragedy of commons in which individually rational action of the members have a
negative effect on the overall population. One possible solution to this problem is
to restrict the grid access to the members who actually need it. This can be
achieved by pricing the access rights, taxation on over use, access regulation for
congestion control etc.

• Discover and communicate dynamic value: Resources on the grid have dynamic
value which depends on the user needs. The value could be considered zero in the
case we consider never exhausting resources. But in case of grid the resources are
scarce. Thus a mechanism should be incorporated for dynamic price discovery
depending on the user urgency requirements.

• Use real money: Since a number of geographically distributed organizations may
participate in grid, a proper convertibility of the currency into value of resources

• should be ascertained.
• Guarantee property rights: Once the user is paying for the grid usage, a

guaranteed QoS (Quality of Service) should be provided to the user which could
be agreed upon prior to the grid use.

• Use futures market: Since the grid is a scarce resource the grid use should be
promoted on the reservation basis rather that on the spot participation only. This
will further help in reducing the price volatility.

• Establish trust: The system should be fully secured to ensure trust between the
participants based on legal and financial consequences.

Many grid projects

7. Conclusion: Since the field of grid computing is quite young, much work is still
to be done to establish that the same protocols applies equally well to all types of grids as
the requirements for the grid are also dependent on the nature of the services it is
designed to provide. We have tried to throw light on various issues and challenges
keeping in mind the heterogeneity and dynamic nature of the grid. The requirements were
modularized to give a proper insight into the requirements.

The issues rose started from the expectations from the end system in a grid environment,
which are quite different from that of the other situations. Since the end system plays a
major role, these requirements were addressed first. Other issues start bothering ever
since the job submission is taken into account, ranging from the credential obtaining to
resource discovery to submission of the job to monitoring the progress of the task over
the grid. These issues were also considered. Since the job needs to be allocated,
allocation issues were taken care of for the ordinary and time specific jobs. Taking into
account the complex nature of the grid every discussion is incomplete if the system
reliability is not concerned. So the fault tolerance and reliability issues were addressed.
Light was thrown on the factors deciding the fault tolerance of the grid by discussing
various possible faults and appropriate recovery methods. Various problems that may
arise in allocation due to dynamic nature of the grid were considered. Since the grid is
heterogeneous and dynamic in nature its security requirements are also different. These
security threats and the attitude of the grid towards these requirements were discussed.
Since the grid involves sharing of resources by various participants financial issues gains

importance. Key issues related to grid economics were raised and discussed. Thus we can
say that the next big challenge for the grid is going to be dominated by business related
issues along with the technical aspects.For a computational grid to be fully functional,
these issues are to be taken care of by the research community. These are open issues and
provide a good piece of work for the developers and researchers.

8. References:

1. Anderson, A.H., (2004) An Introduction to Web Services Policy Language.
Proceedings of Fifth IEEE International Workshop on Policies for Distributed
Systems and Networks, pp. 189-192.

2. Casanova H.(2002), Distributed Computing Research Issues in Grid Computing,
ACM SIGACT News, Volume 33, Issue 3 (September 2002), pp. 50-70.

3. Dierks, T. and Allen C., (1999) The TLS protocol version 1.0, IETF.
http://www.ietf.org/rfc/rfc2246.txt.

4. Foster, What is the Grid? A Three Point Checklist. Grid Today, Vol. 1, No. 6, 22 July
2002.

5. Foster, Ian., Kesselman, C. Computational Grids, (1998) The Grid: Blueprint for a
Future Computing Infrastructure. Morgan Kauffman, pp. 1-29.

6. Huda Mohammad Tanvir, Schmidt W. Heinz, Peake Ian D. (2005), An Agent
Oriented Proactive Fault-tolerant Framework for Grid Computing, Proceedings of the
First International Conference on e-Science and Grid Computing (e-Science’05),
IEEE, 2005.

7. Hwang S. and Kesselman C, (2003) Grid Workflow: A flexible Failure Handling
Framework for the Grid, Proceedings of the 12th IEEE International Symposium on
High Performance Distributed Computing (HPDC’03), pp. 126-137.

8. Johnson Barry, (1990), “Reliability and Fault Tolerance Issues in Intelligent
Computing Systems”. 5th IEEE International Symposium on Intelligent Control,
Vol. 1, 1990, pp. 267-272.

9. Shan, Oliker, Biswas, (2003) Job Superscaler Architecture and Performance in
Computational Grid Environments, ACM/IEEE Conference on Supercomputing,
2003, 15-21 Nov. 2003, pp. 44 – 44.

10. Vidyarthi D.P., Tripathi A.K., Sarkar B.K., (2001) Allocation aspects in Distributed
Computing Systems, IETE Technical review, Vol 18, pp. 449-454.

11. Welch Von, Siebenlist Frank, Foster Ian, Bresnahan John, Czajkowski Karl, Gawor
Jarek, Kesselman Carl, Meder Sam, Pearlman Laura, Tuecke Steven, (2003) Security
for Grid Services. Proceedings of the 12th IEEE International Symposium on High
Performance Distributed Computing (HPDC’03), 1082-8907/03.

12. Wiriyaprasit, Sirappa., Muangsin, Veera, The Impact of Local Priorities Policies on
Grid Scheduling Performance and an Adaptive Policy-based Grid Scheduling
Algorithm. Proceedings of the Seventh International Conference on High
Performance Computing and Grid in Asia Pacific Region (HPCAsia ’04), pp. 343-
346.

13. Zhang X., Zagorodnov D., Hiltunen M., Marzullo K., Schlichting R, (2004), Fault
Tolerant Grid Services Using Primary-Backup: Feasibility and Performance. IEEE
International Conference on Cluster Computing pp. 105-114

.

