
7

SEQ UENTIAL PATTERN EXTRACTIO N FRO M SERVER ACCESS LOG S
USING PLPC-Tree ALG O RITH M

Narayan Prasad K eer
N itin Agrawal

ABSTR ACT

This contribution concerns mining frequent sequenti al patterns on click stream
data applications contend with many challenges such as lim ited memory for
unlimited data. Existing work on mining frequent pa tterns on data streams are
mostly for non-sequential patterns and m ines the fr equent sequences from the
W AP-tree by recursively re-constructing intermediat e trees, starting with suffix
sequences and ending with prefix sequences. This pa per proposes an algorithm
that uses data structure PLPC-tree to handle the co mplexities of m ining frequent
sequential patterns in data streams by totally elim ination of numerous re-
construction of intermediate W AP-trees during minin g. The proposed algorithm
constructs the tree while finding frequent individu al events and then builds the
frequent header node links of the original W AP-tree in an ordered fashion and
uses the position code of each node to identify the ancestor/descendant
relationships between nodes of the tree. It then, f inds each frequent sequential
pattern, through progressive prefix sequence search , starting with its first prefix
subsequence event. Experiments show good perform anc e gain over the W AP-tree
technique.

K eyw ords: W eb usage m ining (W UM), W AP tree, W UM m ethodology, PLPC-Tree
A lgorithm , sequential pattern m ining.

1. Introduction : W ith the explosive growth of Internet use, m ining f requent access
patterns from huge datasets of web log files becom e s im portant. The frequent web access
patterns m ined from web logs can help web m asters a nd designers to understand the
behaviors of web surfers on their web sites. This u nderstanding and knowledge is
essential to further im prove the business of the co m panies and the design of the web sites.
The advance step of data preprocessing contains tra nsfer the structured file containing
visits or episodes to either a flat file or a relat ional database. A fterwards, we apply the
data generalization at the request level (for URLs) and the aggregated data com putation
for episodes, visits and user sessions to com pletel y fill in the database. The W UM term
was introduced by Cooley et al. in 1997 [31]. In [2 1], the term of “Intersites W UM " was
introduced for referring to a W UM process where web access logs from partner W eb sites
are increm entally analyzed. In [12], we used this t erm for referring to a particular case of
W eb Usage M ining, when the W UM process applies to a W eb site com posed of several
W eb servers (i.e. several W eb

Student M .Tech. (CSE) Dept. of CSE, N IIST, Bhopal
 Dept. of CSE, N IIST, Bhopal

access logs). W eb access pattern m ining (or web log m ining) is an exam ple of general
sequential pattern m ining, where an event is an acc ess of a URL. The web access
sequence database is a m ulti-set of web access sequ ences, each of which, in turn, is a
sequence of events of web accesses over a period of tim e. Another exam ple of frequent
pattern m ining is the m ining of biological sequence s where each sequence is a sequence
of am ino acids or nucleotides. Due to the im portanc e of the problem and its large num ber
of applications, web access log m ining has attracte d significant attention in the recent
years [3, 23,15,13,14,2]. The m ost notable algorith m s of web access pattern m ining
include the apriori-based algorithm GSP [30] and a pattern-growth algorithm : the W AP-
tree algorithm [23]. A W AP-tree is an aggregate tre e [31] that represents the web access
sequence database. A ll nodes w ith the sam e label ar e linked when the tree is built [23].
The m ining algorithm in both [23] uses recursive co nditional searching of projection
databases to find frequent web access patterns. The difference is that the W AP-tree
m ining [23] grows the suffix of frequent patterns. It is known that the m ining tim e of the
W AP-tree [23] algorithm is less than that of the Ap rori-based GSP [30] due to m uch
candidate generation process.

1.1 Related W ork W eb Usage M ining
Pei et al. (2000) [24] proposed an algorithm using W AP-tree, which stands for web
access pattern tree. This approach is quite differe nt from the Apriori-like algorithm s. The
m ain steps involved in this technique are sum m arize d next. The W AP-tree stores the web
log data in a prefix tree form at sim ilar to the fre quent pattern tree (Han et al., 2004) [5]
(FP-tree) for non-sequential data. The algorithm fi rst scans the w eb log once to find all
frequent individual events. Secondly, it scans the web log again to construct a W AP-tree
over the set of frequent individual events of each transaction. Thirdly, it finds the
conditional suffix patterns. In the fourth step, it constructs the interm ediate conditional
W AP-tree using the pattern found in previous step. Finally, it goes back to repeat Steps 3
and 4 until the constructed conditional W A P-tree ha s only one branch or is em pty. The
com plete construction and reconstruction processes to find sequential patterns have been
shown in (Pie at el. 2000) [24] sim ilar as shown in the figure 1 & 2 by considering Table
2.

TID W eb Access Sequence Frequent subsequence

100 abdac Abac

200 eaebcac Abcac

300 babfaec Babac

400 afbacfc Aback

Table 2: Sam ple W eb access sequence database for W A P-tree

Figure 1: Construction of W AP-tree

1.2 M otivation and Contributions
W eb usage m ining is the application of established data m ining techniques for analyzing
web site usage. For an e-com m erce com pany, this m ea ns detecting future custom ers
likely to m ake a large num ber of purchases, or pred icting which online visitors w ill click
on what com m ercials or banners based on observation of prior visitors who have behaved
either positively or negatively to the advertisem en t banners. The Apriori-like sequential
m ining algorithm s generate huge sets of candidate p atterns, especially when the patterns
are long. W AP-tree algorithm has the drawback of re cursively re-constructing
interm ediate W AP-trees during m ining, which is tim e -consum ing. This paper proposes
slightly different technique then [1], which stores the sequential data in an ordered linked
PLPC tree. Each of this tree’s nodes has a binary p osition code assigned for directly
m ining the sequential patterns w ithout re-construct ing the interm ediate W AP trees.
Unlike [1], this paper contributes the technique of constructing tree while finding
frequent individual events then builds the frequent header links. The technique proposed
for m ining in this paper presents a m uch better per form ance than that achieved by the
previous W AP-tree techniques especially for large d atabases w ith very low support.

The proposed ordered linked PLPC-Tree M ining algori thm with the Tree Binary Code
Assignm ent (TBCA) algorithm [1]. Section 3 presents an exam ple sequential m ining of a
web log database w ith the PLPC-Tree algorithm . Sect ion 4 discusses experim ental
perform ance analysis, while Section 5 presents conc lusions and future work.

Figure 2: Reconstruction of W AP-tree

II. PR O PO SED WO R K
In this paper the PLPC-tree m ining algorithm
has been proposed to carry out m ining of web access logs.

2.1 PLPC-tree m ining algorithm
PLPC-Tree algorithm is a new sequential pattern m in ing algorithm for web logs, which is
based on PLW AP-tree [1] and W AP-tree (Pei et al., 2 000) [24], which avoids recursively
re-constructing interm ediate W AP-trees during m inin g of the original W AP-tree for
frequent patterns. PLPC-Tree algorithm is able to q uickly determ ine the suffix trees or
forests of any frequent pattern prefix under consid eration by com paring the assigned
binary position codes of nodes of the tree like [1] .

[1] suggested few properties which are required for the PLPC-tree. So this section also
describes som e properties and rules of [1]. Accordi ng to com m on term s and concepts
related to PLW AP-tree based m ining, from the root t o any node in the tree defines a
frequent sequence. For any node labeled e i in the W AP-tree, all nodes in the path from
root of the tree to this node (itself excluded) for m a prefix sequence of e i. The count of
this node e i is called the count of the prefix sequence. Any no de in the prefix sequence of
ei is an ancestor of e i. On the other hand, the nodes from e i (itself excluded) to leaves
form the suffix sequences of e i.

For exam ple if abcd is frequent pattern to be disco vered. The PLW AP tree would find the
prefix event a first, then, using the suffix trees of node a, it w ill find the next prefix
subsequence ab and continuing w ith the suffix tree of b, it w ill find the next prefix
subsequence abc and finally, abcd. Thus, the idea o f PLW AP is to use the suffix trees of
the last frequent event in an m -prefix sequence to recursively extend the subsequence to
m +1 sequence by adding a frequent event that occur red in the suffix trees.
To assign position code to PLW AP-tree nodes, the fo llow ing properties are defined.

Rule 1 .G iven a W A P-tree w ith som e nodes, the position cod e of each node can sim ply be
assigned follow ing the rule that the root has null position code, and the leftm ost child of
the root has a code of 1, but the code of any other node is derived by appending 1 to the
position code of its parent, if this node is the le ftm ost child, or appending 10 to the
position code of the parent if this node is the sec ond leftm ost child, the third leftm ost
child has 100 appended, etc. In general, for the nt h leftm ost child, the position code is
obtained by appending the binary num ber for 2n−1 to the parent’s code.

Property 1 A node α is an ancestor of another node if and only if the position code of α
w ith “1” appended to its end, equals the first x nu m ber of bits in the position code of ,
where x is the ((num ber of bits in the position cod e of) + 1).

The PLPC-Tree algorithm is sim ilar to the W AP-tree [24] and PLW AP-tree [1]
algorithm s introduced earlier since both the PLW AP tree and PLPC-Tree are constructed
the sam e way. However, the PLPC-Tree is m ore effici ent since it constructs the tree
while scanning the database for finding out frequen t individual events, then it builds the
frequent header node links of the original W AP-tree in an ordered fashion and uses the
position code of each node to identify the ancestor /descendant relationships between
nodes of the tree. The PLPC-Tree is better algorith m for large database and when support
is very low . It is based on the follow ing Property 2 which is derived from the Apriori
algorithm (Agrawal and Srikant, 1995) [33]. Other a pplicable properties are also
presented.

Property 2 If e is a frequent event w ithin the set of suffixe s of a sequential pattern L in
the web access sequence database (W ASD), then, the sequence Le is a frequent access
pattern of W ASD. For exam ple, if ac is a frequent p attern, and b is a frequent event
w ithin the suffix sets of c, then, acb is a frequen t access pattern.

Property 3 The support count of a node e i in PLPC-Tree is greater than or equal to the
sum of the counts of the suffix subtrees of e i .

Property 4 If there is a node in an e i current suffix subtree, which is also labeled e i , the
support count of the first e i is the one that contributes to the total support c ount of e i ,
while the count of any other e i node in this sam e subtree is ignored.

Property 5 The support count of a node e i , in the current e i suffix trees (also called
current conditional PLPC-trees), ready to be m ined is the sum of all first e i nodes in all

suffix trees of e i , or in the suffix tree of the Root if the first e vent of a frequent pattern is
being m ined.

Property 6 e i is the next frequent event in the m ined prefix sub sequence if the node e i in
the current suffix tree of e i has a support count greater than or equal to the m inim um
support threshold.

Property 7 For any frequent event e i, all frequent subsequences containing e i can be
visited by follow ing the e i linkage starting from the last visited e i record in the PLPC-tree
being m ined.

Property 8 For any access sequence in an access sequence data base, W ASD, there exists
a unique path in the PLPC-tree starting from the ro ot such that all labels of the nodes in
the path in order are exactly the sam e as the event s in the sequence.

Algorithm 1 (PLPC-Tree: M ines W eb Log Sequence w ith Ordered Li nked W AP Tree)

Algorithm PLPC_TREE (W ASD, M S, F i)
This algorithm m ines web log sequence w ith order li nked W AP-Tree, it accepts W ASD:
W eb access sequence database , M S: m inim um support and produces F i: A
com plete set of frequent pattern in W ASD
Begin
1) Scan W ASD once, find all frequent individual events .
2) Call PLPC-CONSTRUCT (W ASD, M S, L, T)

/construct a PLPC-tree over the set of individual f requent event using algorithm
PLPC-Construct (A lgorithm 2)./

3) Call PLPC_TREE (W ASD, M S, F i)
/Recursively m ine the PLPC-tree using com m on prefix pattern search algorithm ,
PLPC-M ine (A lgorithm 3)/

End // of PLPC-Tree //

Algorithm :-2 (PLPC-Construct – Construct the PLPC-Tree M ining)
Algorithm PLPC_CO NSTRUCT (W ASD, M S, L, T)
This algorithm accepts W ASD: W eb Access Sequence Da tabase, M S: M in Support (0 <
M S ≤ 1), L: 1-frequent events (stored in the header lin kage table) and produces a PLPC-
Tree T (Ordered Linked Position Coded) and rem oves the unlinked node. This algorithm
also uses two local variables NODE_FOUND and CURREN T_NODE (point).
Begin
1. GET_NODE (ROOT). Set ROOT.POSITION_CODE=NULL; Set

ROOT.COUNT=0.
2. For each access sequence, s in the sequence databas e, W ASD, do

2.1 Extract frequent subsequence, S’ (S 1, S 2, … , S n) from S by rem oving all the
events in S that are not in L.

2.2 Set CURRENT_NODE=ROOT.LEFT_CHILD //of Tree T//
2.3 For K=1 to N (length of sequence, S’) do

2.3a If CURRENT_NODE = NULL then

GET_NODE(NEW); NEW .LABLE=Sk; NEW .COUNT=1
// child node (S k: 1) //
NEW .POSITION_CODE=PARENT.POSITION_CODE + “1”
Else If CURRENT_NODE.LABEL=S k, then
Set NODE_FOUND = True
Else let CURRENT_NODE=
CURRENT_NODE.SIBLING, and keep checking whether
CURRENT_NODE.LABEL=Sk and there is no sibling or S k is found

2.3b If NODE_FOUND Then
NEW .COUNT=NEW .COUNT + 1
CURRENT_NODE=NEW
(current_node point to S k)
Else GET_NODE(NEW); NEW .LABEL=S k; NEW .COUNT=1
NEW .POSITION_CODE=
CURRENT_NODE.POSITION_CODE+”0”
CURRENT_NODE=NEW

3. PREORDER(T, ROOT) / visit root, then left and then right subtrees and add all
nodes to appropriate linkage queue//

4. Return (T) w ith linkage header table L.

End // of PLPC-Construct //

Algorithm :-3 (PLPC-M ine- M ining the Ordered Linked PLPC Tree)
Algorithm PLPC-Tree_M ine(T, L, M S, FM , R, F’)
This algorithm m ines ordered linked PLPC-Tree and a ccepts T: PLPC-Tree, L: Header
linkage table, M S: M in Support (0 < M S ≤ 1), FM : Frequent m -sequence, R: Suffix root
set (R includes root and FM is em pty first tim e alg orithm is invoked)
This algorithm produces F’: Frequent (m +1)-sequence as an output and uses local
variables S: Stores whether node is ancestor of the follow ing nodes in the queue, C:
Stores the total num ber of events e i in the suffix trees.
Begin
1. If R = NULL Then Return;
2. For each event, e i in L, FIND(e e, e i) (i.e. e e|suffixtree , do)

2a. Save event ei-in queue to S
2b. Perform for e i-queue

If event ei is the descendent of any event in R, an d is not descendent of S
Then
INSERT(SU FFIX_TREE_HDR, R’)
C.COUNT=C.COUNT + ei.COUNT
REPLACE(S, e i)
If C > M S Then
Append ei after F to F’ and output F’
Call PLPC_M ine(T, L, M S, F’, R’, F’)

End // of PLPC-M ine //

Figure 3: Construction of PLPC-tree using pre-order traversal

A ll these three algorithm s shown here are used to c onstruct PLPC-tree and m ine
sequential web access pattern. The process of const ruction PLPC-tree is shown in Figure
3 using pre-order traversal and position code assig nm ent suggested in [1].

Figure 4: M ining PLPC-tree to find frequent sequenc e starting w ith aa.

Figure 5: M ining PLPC-tree to find frequent sequenc e starting w ith ab or ac.

M ining PLPC-tree to find sequential web access patt ern w ith different starting sequences
are shown in figure 4 and 5 step w ise.

III. PERFO RM ANCE ANA LY SIS AND EXPERIM EN TA L EVA LUATIO N

To analyze perform ance and to evaluation experim ent al result, we use synthetic datasets.
For m ining PLPC-tree we have used synthetic dataset s generated by program developed
in C++.

3.1 PLPC M ining Experim ents
This section we w ill see the experim ental perform an ce of PLPC algorithm s. The PLPC
algorithm s are im plem ented in C++ language running under Borland C++ environm ent.
A ll experim ents are perform ed on 2.20 GHz Intel(R) Pentium (R) Dual CPU m achine
w ith 1GB m em ory. The operating system is W indows Xp . Synthetic datasets are used.
The datasets consist of sequences of events, where each event represents an accessed web
page. The param eters shown below are used to genera te the data sets.

|D |: Num ber of sequences in the database
|C|: Average length of the sequences
|S|: Average length of m axim al potentially frequent sequence
|N |: num ber of events

For exam ple, C10·S5·N2000·D60 K m eans that |C| = 10 , |S| = 5, |N | = 2000, and |D | = 60
K. It represents a group of data w ith average lengt h of the sequences as 10, the average
length of m axim al potentially frequent sequence is 5, the num ber of individual events in
the database are 2000, and the total num ber of sequ ences in database is 60 thousand. The
datasets w ith different param eters test different a spects of the algorithm s. Basically, if the
num ber of these four param eters becom es larger, the execution tim e becom es longer.

3.2 Experim ent 1: Execution tim e for different supp ort

This experim ent uses fixed size database and differ ent m inim um support to com pare the
perform ance of PLPC algorithm s w ith W AP algorithm . The algorithm s are tested w ith
m inim um supports between 0.2% to 15% against the 10 0 thousand (100 K) database.
From Table 5.1 and figure 5.1(a) and 5.1(b), it can be seen that the execution tim e of
every algorithm decreases as the m inim um support in creases. This is because when the
m inim um support increases, the num ber of candidate sequence decreases. Thus, the
algorithm s need less tim e to find the frequent sequ ences.

Algorithm Execution time (in sec.) at different sup port

M inSupp (In %) 0.2 0.4 0.6 0.8 1 5 10 15

FP 109949 27692 14101 9124 6473 621 186 95

W AP-Tree 228 52 28 21 14 4 3 1

PLPC-Tree 38 9 5 3 3 1 1 0

Table 5.1: Execution tim es for dataset (100KB) at d ifferent m inim um supports

Execution Tim e Variation in D ifferent
M inim um Support in PLPC-Tree and

W AP-Tree A lgorithm

0

50

100

150

200

250

E
xe

cu
tion

 T
im

e in
 S
ec

on
d

PLPC-Tree 38 9 5 3 3 1 1 0

W AP-Tree 22 52 28 21 14 4 3 1

0.2 0.4 0.6 0.8 1 5 10 15

Figure 5.1(a): Execution tim es variation w ith diffe rent m inim um supports in PLPC-Tree

A lgorithm and W AP-Tree A lgorithm

Execution Tim e Variation in D ifferent
M inim um Support in PLPC-Tree and W AP-

Tree Algorithm

0

100

200

300

E
xe

cu
tion

 T
im

e in
 S

ec
on

d

W AP-
Tree

228 52 28 21 14 4 3 1

PLPC-
Tree

38 9 5 3 3 1 1 0

0.2 0.4 0.6 0.8 1 5 10 15

Figure 5.1(b): Execution tim es variation w ith diffe rent m inim um supports in PLPC-Tree
A lgorithm and W AP-Tree A lgorithm .

3.3 Experim ent 2: Execution tim e for different Data sizes

 This experim ent uses different sizes from 20K to 1 00K database and fixed m inim um
support 2% to com pare the perform ance of PLPC algor ithm s w ith W AP algorithm . Table
5.2 and figure 5.2(a) and figure 5.2(b), it can be seen that the execution tim e of every
algorithm increases as the data sizes increases. Th is is because when the data sizes
increases, the num ber of candidate sequence increas es. Thus, the PLPC algorithm s need
less tim e to find the frequent sequences.

 D ifferent changed Transaction size
A lgorithm tim e in
Seconds

20K 40K 60K 80K 100K

W AP 6 7 9 11 13
PLPC 0 1 1 1 2

Table 5.2: Execution tim es for different datasets a t fixed m inim um supports of 2%

Figure 5.2(a): Execution tim es for different datase ts at fixed m inim um supports of 2%

Figure 5.2(b): Execution tim es for different datase ts at fixed m inim um supports of 2%

Conclusion and perspectives : This paper presents a new algorithm (PLPC-Tree) for
efficiently m ining sequential patterns from web log . The PLPC algorithm adapts the
W AP-tree structure for storing frequent sequential patterns to be m ined. However, to
im prove on m ining efficiency, the project proposes to find com m on prefix patterns
instead of suffix patterns as done by W AP-tree m ini ng. M oreover, in order to avoid
recursively re-constructing interm ediate W A P-trees, pre-order frequent header node
linkages and position codes are proposed. W hile the pre-order linkage provides a way to
traverse the event queue w ithout going backwards, p osition codes are used to identify the
position of nodes in the PLPC tree. W ith these two m ethods, the next frequent event in
each suffix tree is found w ithout traversing the wh ole W AP-tree. Thus, it avoids re-
constructing W AP-tree recursively. The experim ents show that m ining web log using
PLPC algorithm is m uch m ore efficient than w ith W AP -tree and G SP algorithm s,
especially when the average frequent sequence becom es longer and the original database
becom es larger. For m ining sequential patterns from web logs, the follow ing aspects m ay
be considered for future work. The procedure for tr ansform ing the web log to database is
still tim e-consum ing and could be im proved upon for web log m ining. The PLPC
algorithm could be extended to handle sequential pa ttern m ining in large traditional
databases other than web log and any other order ca n be consider for im provem ent pre-
order linkage. Efficient web usage m ining could ben efit from relating usage to the
content of web pages. O ther areas of interest for f uture work include distributed m ining
w ith PLPC trees and applying these techniques to in crem ental m ining of web logs and
sequential patterns.

References :

1. Jian-Chin Ou, Chang-Huang Lee, and M ing-Syan Chen. W eb log m ining w ith
adaptive support thresholds. In Proceedings of 2005 International W orld W ide
W eb Conference, pp. 1188-1189, 2005.

2. J. W ang and J. Han. BIDE: Efficient m ining of frequ ent closed sequences. In
Proceedings of the 20 th International Conference on Data Engineering (ICDE '04),
pp. 79-90, 2004.

3. Han, J., Pei, J., Y in, Y ., and M ao, R. M ining frequ ent patterns w ithout candidate
generation: A frequent pattern tree approach. Inter national Journal of Data M ining
and Knowledge D iscovery. K luwer Academ ic Publishers , 8(1): 53–87. 2004.

4. Q. Yang and H. H. Zhang. W eb-log m ining for predict ive web caching. IEEE
Transactions on Knowledge and Data Engineering, 15(4):1050-1053, 2003.

5. D. Oberle, B. Berendt, A . Hotho, and J. Gonzalez. C onceptual User Tracking. In
Proceedings of A tlantic W eb Intelligence Conference (A W IC'03), volum e 2663
of LNAI, pages 155{164. Springer, 2003.

6. Nanopoulos, A . and M anolopoulos, Y . M ining patterns from graph traversals.
Data and Knowledge Engineering, 37(3):243–266. 2001 .

7. A. M aedche and S. Staab. Ontology Learning for the Sem antic W eb. IEEE
Intelligent System s, 16(2):72{79, 2001.

8. Pei, J., Han, J., M ortazavi-Asl, B., and Pinto, H. 2001. PrefixSpan: M ining
sequential patterns efficiently by prefix projected pattern growth. In Proceedings
of the 2001 International Conference on Data Engine ering (ICDE ’01). Germ any,
Heidelberg, pp. 215–224. 2001.

9. F. Bonchi, F. G iannotti, C. Gozzi, G. M anco, M . Nan ni, D . Pedreschi, C. Renso,
and S. Ruggieri. W eb Log Data W arehousing and M inin g for Intelligent W eb
Caching. Data Knowledge Engineering, 39(2):165{189, 2001.

10. R. Kosala and H. Blockeel. W eb M ining Research: A S urvey. SIGKDD:
SIGKDD Explorations: Newsletter of the Special Inte rest Group (SIG) on
Know ledge D iscovery & Data M ining, ACM , 2(1):1{15, 2000.

11. Jian Pei, Jiawei Han, Behzad M ortazavi-asl, and Hua Zhu. M ining access patterns
efficiently from web logs. In Proceedings of the 4t h Pacific-Asia Conference on
Know ledge D iscovery and Data M ining (PAKDD'00), pp. 396-407. Lecture
Notes in Com puter Science, Vol. 1805, 2000.

12. Berendt, B. and Spiliopoulou, M . Analyzing navigati on behaviour in web sites
integrating m ultiple inform ation system s. VLDB Jour nal, Special Issue on
Databases and the W eb, 9(1):56–75. 2000.

13. Han, FreeSpan: Frequent pattern-projected sequentia l pattern m ining. In
Proceedings of the 2000 Int. Conference on Knowledg e D iscovery and Data
M ining (KDD’00). Boston, M A, U.S.A., pp. 355–359. 2 000.

14. Nanopoulos, A . and M anolopoulos, Y . Finding general ized path patterns for web
log data m ining. Data and Knowledge Engineering, 37 (3):243–266. 2000.

15. Han, J. and Kam ber, M . Data M ining: Concepts and Te chniques. M organ
Kaufm ann Publishers. Han, J., Pei, J., M ortazavi-As l, B., Chen, Q ., Dayal, U ., and
Hsu, M .-C. 2000.

16. Srivastava, J., Cooley, R., Deshpande, M ., and Tan, P. W eb usage m ining:
D iscovery and applications of usage patterns from w eb data. SIGKDD
Explorations, Vol. 1. Shaffer, C.A. A Practical Int roduction to Data Structures
and A lgorithm Analysis. Prentice Hall Inc. 2000.

17. Spiliopoulou, M . The laborious way from data m ining to web m ining. Journal of
Com puter System s Science and Engineering, Special I ssue on Sem antics of the
W eb, 14:113–126. 1999.

18. M . Spiliopoulou, L. C. Faulstich, and K. W inkler. A Data M iner Analyzing the
Navigational Behaviour of W eb Users. In Proceedings of the W orkshop on
M achine Learning in User M odelling of the ACAI'99 I nternational Conference,
Creta, Greece, July 1999.

