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ABSTR ACT 

 
This contribution concerns mining frequent sequenti al patterns on click stream 
data applications contend with many challenges such  as lim ited memory for 
unlimited data. Existing work on mining frequent pa tterns on data streams are 
mostly for non-sequential patterns and m ines the fr equent sequences from the 
W AP-tree by recursively re-constructing intermediat e trees, starting with suffix 
sequences and ending with prefix sequences. This pa per proposes an algorithm 
that uses data structure PLPC-tree to handle the co mplexities of m ining frequent 
sequential patterns in data streams by totally elim ination of numerous re-
construction of intermediate W AP-trees during minin g. The proposed algorithm 
constructs the tree while finding frequent individu al events and then builds the 
frequent header node links of the original W AP-tree  in an ordered fashion and 
uses the position code of each node to identify the  ancestor/descendant 
relationships between nodes of the tree. It then, f inds each frequent sequential 
pattern, through progressive prefix sequence search , starting with its first prefix 
subsequence event. Experiments show good perform anc e gain over the W AP-tree 
technique. 

 
K eyw ords:  W eb usage m ining (W UM ), W AP tree, W UM  m ethodology,  PLPC-Tree 
A lgorithm , sequential pattern m ining. 
 
1. Introduction  : W ith the explosive growth of Internet use, m ining f requent access 
patterns from  huge datasets of web log files becom e s im portant. The frequent web access 
patterns m ined from  web logs can help web m asters a nd designers to understand the 
behaviors of web surfers on their web sites. This u nderstanding and knowledge is 
essential to further im prove the business of the co m panies and the design of the web sites. 
The advance step of data preprocessing contains tra nsfer the structured file containing 
visits or episodes to either a flat file or a relat ional database. A fterwards, we apply the 
data generalization at the request level (for URLs)  and the aggregated data com putation 
for episodes, visits and user sessions to com pletel y fill in the database. The W UM  term  
was introduced by Cooley et al. in 1997 [31]. In [2 1], the term  of “Intersites W UM " was 
introduced for referring to a W UM  process where web  access logs from  partner W eb sites 
are increm entally analyzed. In [12], we used this t erm  for referring to a particular case of 
W eb Usage M ining, when the W UM  process applies to a  W eb site com posed of several 
W eb servers (i.e. several W eb  
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access logs). W eb access pattern m ining (or web log  m ining) is an exam ple of general 
sequential pattern m ining, where an event is an acc ess of a URL. The web access 
sequence database is a m ulti-set of web access sequ ences, each of which, in turn, is a 
sequence of events of web accesses over a period of  tim e. Another exam ple of frequent 
pattern m ining is the m ining of biological sequence s where each sequence is a sequence 
of am ino acids or nucleotides. Due to the im portanc e of the problem  and its large num ber 
of applications, web access log m ining has attracte d significant attention in the recent 
years [3, 23,15,13,14,2]. The m ost notable algorith m s of web access pattern m ining 
include the apriori-based algorithm  GSP [30] and a pattern-growth algorithm : the W AP-
tree algorithm  [23]. A  W AP-tree is an aggregate tre e [31] that represents the web access 
sequence database. A ll nodes w ith the sam e label ar e linked when the tree is built [23]. 
The m ining algorithm  in both [23] uses recursive co nditional searching of projection 
databases to find frequent web access patterns. The  difference is that the W AP-tree 
m ining [23] grows the suffix of frequent patterns. It is known that the m ining tim e of the 
W AP-tree [23] algorithm  is less than that of the Ap rori-based GSP [30] due to m uch 
candidate generation process.  
 
1.1  Related W ork W eb Usage M ining 
Pei et al. (2000) [24] proposed an algorithm  using W AP-tree, which stands for web 
access pattern tree. This approach is quite differe nt from  the Apriori-like algorithm s. The 
m ain steps involved in this technique are sum m arize d next. The W AP-tree stores the web 
log data in a prefix tree form at sim ilar to the fre quent pattern tree (Han et al., 2004) [5] 
(FP-tree) for non-sequential data. The algorithm  fi rst scans the w eb log once to find all 
frequent individual events. Secondly, it scans the web log again to construct a W AP-tree 
over the set of frequent individual events of each transaction. Thirdly, it finds the 
conditional suffix patterns. In the fourth step, it  constructs the interm ediate conditional 
W AP-tree using the pattern found in previous step. Finally, it goes back to repeat Steps 3 
and 4 until the constructed conditional W A P-tree ha s only one branch or is em pty. The 
com plete construction and reconstruction processes to find sequential patterns have been 
shown in (Pie at el. 2000) [24] sim ilar as shown in  the figure 1 &  2 by considering Table 
2. 
 
 

TID  W eb Access Sequence Frequent subsequence 

100 abdac Abac 

200 eaebcac Abcac 

300 babfaec Babac 

400 afbacfc Aback 

 
 

Table 2: Sam ple W eb access sequence database for W A P-tree 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1: Construction of W AP-tree 
 

1.2  M otivation and Contributions 
W eb usage m ining is the application of established data m ining techniques for analyzing 
web site usage. For an e-com m erce com pany, this m ea ns detecting future custom ers 
likely to m ake a large num ber of purchases, or pred icting which online visitors w ill click 
on what com m ercials or banners based on observation  of prior visitors who have behaved 
either positively or negatively to the advertisem en t banners. The Apriori-like sequential 
m ining algorithm s generate huge sets of candidate p atterns, especially when the patterns 
are long. W AP-tree algorithm  has the drawback of re cursively re-constructing 
interm ediate W AP-trees during m ining, which is tim e -consum ing. This paper proposes 
slightly different technique then [1], which stores  the sequential data in an ordered linked 
PLPC tree. Each of this tree’s nodes has a binary p osition code assigned for directly 
m ining the sequential patterns w ithout re-construct ing the interm ediate W AP trees. 
Unlike [1], this paper contributes the technique of  constructing tree while finding 
frequent individual events then builds the frequent  header links. The technique proposed 
for m ining in this paper presents a m uch better per form ance than that achieved by the 
previous W AP-tree techniques especially for large d atabases w ith very low support. 



 
The proposed ordered linked PLPC-Tree M ining algori thm  with the Tree Binary Code 
Assignm ent (TBCA) algorithm  [1]. Section 3 presents  an exam ple sequential m ining of a 
web log database w ith the PLPC-Tree algorithm . Sect ion 4 discusses experim ental 
perform ance analysis, while Section 5 presents conc lusions and future work. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Reconstruction of W AP-tree 
 
II.  PR O PO SED WO R K 
In this paper the PLPC-tree m ining algorithm   
has been proposed to carry out m ining of web access  logs.  
 
2.1  PLPC-tree m ining algorithm   
PLPC-Tree algorithm  is a new sequential pattern m in ing algorithm  for web logs, which is 
based on PLW AP-tree [1] and W AP-tree (Pei et al., 2 000) [24], which avoids recursively 
re-constructing interm ediate W AP-trees during m inin g of the original W AP-tree for 
frequent patterns. PLPC-Tree algorithm  is able to q uickly determ ine the suffix trees or 
forests of any frequent pattern prefix under consid eration by com paring the assigned 
binary position codes of nodes of the tree like [1] .  
 
[1] suggested few  properties which are required for  the PLPC-tree. So this section also 
describes som e properties and rules of [1]. Accordi ng to com m on term s and concepts 
related to PLW AP-tree based m ining, from  the root t o any node in the tree defines a 
frequent sequence. For any node labeled e i in the W AP-tree, all nodes in the path from  
root of the tree to this node (itself excluded) for m  a prefix sequence of e i. The count of 
this node e i is called the count of the prefix sequence. Any no de in the prefix sequence of 
ei is an ancestor of e i. On the other hand, the nodes from  e i (itself excluded) to leaves 
form  the suffix sequences of e i.  
 



For exam ple if abcd is frequent pattern to be disco vered. The PLW AP tree would find the 
prefix event a first, then, using the suffix trees of node a, it w ill find the next prefix 
subsequence ab and continuing w ith the suffix tree of b, it w ill find the next prefix 
subsequence abc and finally, abcd. Thus, the idea o f PLW AP is to use the suffix trees of 
the last frequent event in an m -prefix sequence to recursively extend the subsequence to 
m  +1 sequence by adding a frequent event that occur red in the suffix trees.       
To assign position code to PLW AP-tree nodes, the fo llow ing properties are defined. 
 
Rule 1 .G iven a W A P-tree w ith som e nodes, the position cod e of each node can sim ply be 
assigned follow ing the rule that the root has null position code, and the leftm ost child of 
the root has a code of 1, but the code of any other  node is derived by appending 1 to the 
position code of its parent, if this node is the le ftm ost child, or appending 10 to the 
position code of the parent if this node is the sec ond leftm ost child, the third leftm ost 
child has 100 appended, etc. In general, for the nt h leftm ost child, the position code is 
obtained by appending the binary num ber for 2n−1 to  the parent’s code. 
 
Property 1  A  node α is an ancestor of another node  if and only if the position code of α 
w ith “1” appended to its end, equals the first x nu m ber of bits in the position code of , 
where x is the ((num ber of bits in the position cod e of ) + 1). 
 
The PLPC-Tree algorithm  is sim ilar to the W AP-tree [24] and PLW AP-tree [1] 
algorithm s introduced earlier since both the PLW AP tree and PLPC-Tree are constructed 
the sam e way. However, the PLPC-Tree is m ore effici ent since it constructs the tree 
while scanning the database for finding out frequen t individual events, then it builds the 
frequent header node links of the original W AP-tree  in an ordered fashion and uses the 
position code of each node to identify the ancestor /descendant relationships between 
nodes of the tree. The PLPC-Tree is better algorith m  for large database and when support 
is very low . It is based on the follow ing Property 2 which is derived from  the Apriori 
algorithm  (Agrawal and Srikant, 1995) [33]. Other a pplicable properties are also 
presented. 
 
Property 2  If e is a frequent event w ithin the set of suffixe s of a sequential pattern L in 
the web access sequence database (W ASD), then, the sequence Le is a frequent access 
pattern of W ASD. For exam ple, if ac is a frequent p attern, and b is a frequent event 
w ithin the suffix sets of c, then, acb is a frequen t access pattern. 
 
Property 3  The support count of a node e i in PLPC-Tree is greater than or equal to the 
sum  of the counts of the suffix subtrees of e i .  
 
Property 4  If there is a node in an e i current suffix subtree, which is also labeled e i , the 
support count of the first e i is the one that contributes to the total support c ount of e i , 
while the count of any other e i node in this sam e subtree is ignored.  
 
Property 5  The support count of a node e i , in the current e i suffix trees (also called 
current conditional PLPC-trees), ready to be m ined is the sum  of all first e i nodes in all 



suffix trees of e i , or in the suffix tree of the Root if the first e vent of a frequent pattern is 
being m ined. 
 
Property 6  e i is the next frequent event in the m ined prefix sub sequence if the node e i in 
the current suffix tree of e i has a support count greater than or equal to the m inim um  
support threshold. 
 
Property 7  For any frequent event e i, all frequent subsequences containing e i can be 
visited by follow ing the e i linkage starting from  the last visited e i record in the PLPC-tree 
being m ined. 
 
Property 8  For any access sequence in an access sequence data base, W ASD, there exists 
a unique path in the PLPC-tree starting from  the ro ot such that all labels of the nodes in 
the path in order are exactly the sam e as the event s in the sequence. 
 
Algorithm  1  (PLPC-Tree: M ines W eb Log Sequence w ith Ordered Li nked W AP Tree) 
 
Algorithm  PLPC_TREE (W ASD, M S, F i) 
This algorithm  m ines web log sequence w ith order li nked W AP-Tree, it accepts W ASD: 
W eb access sequence database , M S: m inim um  support  and produces F i: A  
com plete set of frequent pattern in W ASD 
Begin 
1) Scan W ASD once, find all frequent individual events . 
2) Call PLPC-CONSTRUCT (W ASD, M S, L, T )  

/construct a PLPC-tree over the set of individual f requent event using algorithm  
PLPC-Construct (A lgorithm  2)./ 

3) Call PLPC_TREE (W ASD, M S, F i) 
/Recursively m ine the PLPC-tree using com m on prefix  pattern search algorithm , 
PLPC-M ine (A lgorithm  3)/ 

End // of PLPC-Tree // 
 
Algorithm :-2  (PLPC-Construct – Construct the PLPC-Tree M ining) 
Algorithm  PLPC_CO NSTRUCT (W ASD, M S, L, T) 
This algorithm  accepts W ASD: W eb Access Sequence Da tabase, M S: M in Support (0 < 
M S ≤ 1), L: 1-frequent events (stored in the header lin kage table) and produces a PLPC-
Tree T (Ordered Linked Position Coded) and rem oves the unlinked node. This algorithm  
also uses two local variables NODE_FOUND and CURREN T_NODE (point).  
Begin  
1. GET_NODE (ROOT). Set ROOT.POSITION_CODE=NULL; Set 

ROOT.COUNT=0. 
2. For each access sequence, s in the sequence databas e, W ASD, do 

2.1  Extract frequent subsequence, S’ (S 1, S 2, … , S n) from  S by rem oving all the 
events in S that are not in L.  

2.2  Set CURRENT_NODE=ROOT.LEFT_CHILD //of Tree T// 
2.3  For K=1 to N  (length of sequence, S’) do 

2.3a  If CURRENT_NODE = NULL then  



GET_NODE(NEW ); NEW .LABLE=Sk; NEW .COUNT=1  
// child node (S k: 1) // 
NEW .POSITION_CODE=PARENT.POSITION_CODE + “1” 
Else If CURRENT_NODE.LABEL=S k, then  
Set NODE_FOUND = True 
Else let CURRENT_NODE= 
CURRENT_NODE.SIBLING, and keep checking whether 
CURRENT_NODE.LABEL=Sk and there is no sibling or S k is found 

2.3b  If  NODE_FOUND Then  
NEW .COUNT=NEW .COUNT + 1  
CURRENT_NODE=NEW   
(current_node point to S k) 
Else  GET_NODE(NEW ); NEW .LABEL=S k; NEW .COUNT=1 
NEW .POSITION_CODE= 
CURRENT_NODE.POSITION_CODE+”0”  
CURRENT_NODE=NEW  

3. PREORDER(T, ROOT) / visit root, then left and  then  right subtrees and  add all 
nodes to appropriate linkage queue// 

4. Return (T) w ith linkage header table L. 

End // of PLPC-Construct // 
 
Algorithm :-3  (PLPC-M ine- M ining the Ordered Linked PLPC Tree) 
Algorithm  PLPC-Tree_M ine(T, L, M S, FM , R, F’) 
This algorithm  m ines ordered linked PLPC-Tree and a ccepts T: PLPC-Tree, L: Header 
linkage table, M S: M in Support (0 < M S ≤ 1), FM : Frequent m -sequence, R: Suffix root 
set (R includes root and FM  is em pty first tim e alg orithm  is invoked) 
This algorithm  produces F’: Frequent (m +1)-sequence  as an output and uses local 
variables S: Stores whether node is ancestor of the  follow ing nodes in the queue, C: 
Stores the total num ber of events e i in the suffix trees. 
Begin 
1. If R = NULL Then Return; 
2. For each event, e i in L, FIND(e e, e i) (i.e. e e|suffixtree , do) 

2a. Save event ei-in queue to S   
2b. Perform  for e i-queue 

If event ei is the descendent of any event in R, an d is not descendent of S 
Then 
INSERT(SU FFIX_TREE_HDR, R’ ) 
C.COUNT=C.COUNT + ei.COUNT 
REPLACE(S, e i) 
If C > M S Then 
Append ei after F to F’ and output F’ 
Call PLPC_M ine(T, L, M S, F’, R’, F’) 

End // of PLPC-M ine // 
 



 
 

Figure 3: Construction of PLPC-tree using pre-order  traversal 
 
A ll these three algorithm s shown here are used to c onstruct PLPC-tree and m ine 
sequential web access pattern. The process of const ruction PLPC-tree is shown in Figure 
3 using pre-order traversal and position code assig nm ent suggested in [1]. 
 

 
 
 

 
 
 

Figure 4: M ining PLPC-tree to find frequent sequenc e starting w ith aa. 
 
 



 

 
 
Figure 5: M ining PLPC-tree to find frequent sequenc e starting w ith ab or ac. 
 
M ining PLPC-tree to find sequential web access patt ern w ith different starting sequences 
are shown in figure 4 and 5 step w ise.  
 
 
III.  PERFO RM ANCE ANA LY SIS AND EXPERIM EN TA L EVA LUATIO N 
 
To analyze perform ance and to evaluation experim ent al result, we use synthetic datasets. 
For m ining PLPC-tree we have used synthetic dataset s generated by program  developed 
in C++.  
 
3.1  PLPC M ining Experim ents 
This section we w ill see the experim ental perform an ce of PLPC algorithm s. The PLPC 
algorithm s are im plem ented in C++ language running under Borland C++ environm ent. 
A ll experim ents are perform ed on 2.20 GHz Intel(R) Pentium (R) Dual CPU m achine 
w ith 1GB m em ory. The operating system  is W indows Xp . Synthetic datasets are used. 
The datasets consist of sequences of events, where each event represents an accessed web 
page. The param eters shown below are used to genera te the data sets. 
 



|D |: Num ber of sequences in the database 
|C|: Average length of the sequences 
|S|: Average length of m axim al potentially frequent  sequence 
|N |: num ber of events 
 
For exam ple, C10·S5·N2000·D60 K m eans that |C| = 10 , |S| = 5, |N | = 2000, and |D | = 60 
K. It represents a group of data w ith average lengt h of the sequences as 10, the average 
length of m axim al potentially frequent sequence is 5, the num ber of individual events in 
the database are 2000, and the total num ber of sequ ences in database is 60 thousand. The 
datasets w ith different param eters test different a spects of the algorithm s. Basically, if the 
num ber of these four param eters becom es larger, the  execution tim e becom es longer. 
 
3.2 Experim ent 1: Execution tim e for different supp ort  
 
This experim ent uses fixed size database and differ ent m inim um  support to com pare the 
perform ance of PLPC algorithm s w ith W AP algorithm . The algorithm s are tested w ith 
m inim um  supports between 0.2%  to 15%  against the 10 0 thousand (100 K) database. 
From  Table 5.1 and figure 5.1(a) and 5.1(b), it can  be seen that the execution tim e of 
every algorithm  decreases as the m inim um  support in creases. This is because when the 
m inim um  support increases, the num ber of candidate sequence decreases. Thus, the 
algorithm s need less tim e to find the frequent sequ ences. 
 
 
 

Algorithm  Execution time (in sec.) at different sup port 

M inSupp (In % ) 0.2 0.4 0.6 0.8 1 5 10 15 

FP 109949 27692 14101 9124 6473 621 186 95 

W AP-Tree 228 52 28 21 14 4 3 1 

PLPC-Tree 38 9 5 3 3 1 1 0 

 
Table 5.1: Execution tim es for dataset (100KB) at d ifferent m inim um  supports 
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Figure 5.1(a): Execution tim es variation w ith diffe rent m inim um  supports in PLPC-Tree 

A lgorithm  and W AP-Tree A lgorithm  
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Figure 5.1(b): Execution tim es variation w ith diffe rent m inim um  supports in PLPC-Tree 
A lgorithm  and W AP-Tree A lgorithm . 

 
 
 
 



 
3.3 Experim ent 2: Execution tim e for different Data  sizes 
 
 This experim ent uses different sizes from  20K to 1 00K database and fixed m inim um  
support 2%  to com pare the perform ance of PLPC algor ithm s w ith W AP algorithm . Table 
5.2 and figure 5.2(a) and figure 5.2(b), it can be seen that the execution tim e of every 
algorithm  increases as the data sizes increases. Th is is because when the data sizes 
increases, the num ber of candidate sequence increas es. Thus, the PLPC algorithm s need 
less tim e to find the frequent sequences. 
 

 D ifferent changed Transaction size 
A lgorithm  tim e in 
Seconds 

20K 40K 60K 80K 100K 

W AP 6 7 9 11 13 
PLPC 0 1 1 1 2 

 
Table 5.2: Execution tim es for different datasets a t fixed m inim um  supports of 2%  

 
 

 
 
Figure 5.2(a): Execution tim es for different datase ts at fixed m inim um  supports of 2%   
 
 

 
 



Figure 5.2(b): Execution tim es for different datase ts at fixed m inim um  supports of 2%   
 
 
Conclusion and perspectives : This paper presents a new algorithm  (PLPC-Tree) for  
efficiently m ining sequential patterns from  web log . The PLPC algorithm  adapts the 
W AP-tree structure for storing frequent sequential patterns to be m ined. However, to 
im prove on m ining efficiency, the project proposes to find com m on prefix patterns 
instead of suffix patterns as done by W AP-tree m ini ng. M oreover, in order to avoid 
recursively re-constructing interm ediate W A P-trees,  pre-order frequent header node 
linkages and position codes are proposed. W hile the  pre-order linkage provides a way to 
traverse the event queue w ithout going backwards, p osition codes are used to identify the 
position of nodes in the PLPC tree. W ith these two m ethods, the next frequent event in 
each suffix tree is found w ithout traversing the wh ole W AP-tree. Thus, it avoids re-
constructing W AP-tree recursively. The experim ents show that m ining web log using 
PLPC algorithm  is m uch m ore efficient than w ith W AP -tree and G SP algorithm s, 
especially when the average frequent sequence becom es longer and the original database 
becom es larger. For m ining sequential patterns from  web logs, the follow ing aspects m ay 
be considered for future work. The procedure for tr ansform ing the web log to database is 
still tim e-consum ing and could be im proved upon for  web log m ining. The PLPC 
algorithm  could be extended to handle sequential pa ttern m ining in large traditional 
databases other than web log and any other order ca n be consider for im provem ent pre-
order linkage. Efficient web usage m ining could ben efit from  relating usage to the 
content of web pages. O ther areas of interest for f uture work include distributed m ining 
w ith PLPC trees and applying these techniques to in crem ental m ining of web logs and 
sequential patterns.  
 
 
References :  
 

1. Jian-Chin Ou, Chang-Huang Lee, and M ing-Syan Chen. W eb log m ining w ith 
adaptive support thresholds. In Proceedings of 2005  International W orld W ide 
W eb Conference, pp. 1188-1189, 2005. 

2. J. W ang and J. Han. BIDE: Efficient m ining of frequ ent closed sequences. In 
Proceedings of the 20 th  International Conference on Data Engineering (ICDE '04), 
pp. 79-90, 2004. 

3. Han, J., Pei, J., Y in, Y ., and M ao, R. M ining frequ ent patterns w ithout candidate 
generation: A  frequent pattern tree approach. Inter national Journal of Data M ining 
and Knowledge D iscovery. K luwer Academ ic Publishers , 8(1): 53–87. 2004.  

4. Q. Yang and H. H. Zhang. W eb-log m ining for predict ive web caching. IEEE 
Transactions on Knowledge and Data Engineering, 15( 4):1050-1053, 2003.  

5. D. Oberle, B. Berendt, A . Hotho, and J. Gonzalez. C onceptual User Tracking. In 
Proceedings of A tlantic W eb Intelligence Conference  (A W IC'03), volum e 2663 
of LNAI, pages 155{164. Springer, 2003. 

6. Nanopoulos, A . and M anolopoulos, Y . M ining patterns  from  graph traversals. 
Data and Knowledge Engineering, 37(3):243–266. 2001 .  



7. A. M aedche and S. Staab. Ontology Learning for the Sem antic W eb. IEEE 
Intelligent System s, 16(2):72{79, 2001. 

8. Pei, J., Han, J., M ortazavi-Asl, B., and Pinto, H. 2001. PrefixSpan: M ining 
sequential patterns efficiently by prefix projected  pattern growth. In Proceedings 
of the 2001 International Conference on Data Engine ering (ICDE ’01). Germ any, 
Heidelberg, pp. 215–224. 2001.  

9. F. Bonchi, F. G iannotti, C. Gozzi, G. M anco, M . Nan ni, D . Pedreschi, C. Renso, 
and S. Ruggieri. W eb Log Data W arehousing and M inin g for Intelligent W eb 
Caching. Data Knowledge Engineering, 39(2):165{189,  2001. 

10. R. Kosala and H. Blockeel. W eb M ining Research: A  S urvey. SIGKDD: 
SIGKDD Explorations: Newsletter of the Special Inte rest Group (SIG) on 
Know ledge D iscovery &  Data M ining, ACM , 2(1):1{15, 2000. 

11. Jian Pei, Jiawei Han, Behzad M ortazavi-asl, and Hua  Zhu. M ining access patterns 
efficiently from  web logs. In Proceedings of the 4t h Pacific-Asia Conference on 
Know ledge D iscovery and Data M ining (PAKDD'00), pp.  396-407. Lecture 
Notes in Com puter Science, Vol. 1805, 2000. 

12. Berendt, B. and Spiliopoulou, M . Analyzing navigati on behaviour in web sites 
integrating m ultiple inform ation system s. VLDB Jour nal, Special Issue on 
Databases and the W eb, 9(1):56–75. 2000. 

13. Han, FreeSpan: Frequent pattern-projected sequentia l pattern m ining. In 
Proceedings of the 2000 Int. Conference on Knowledg e D iscovery and Data 
M ining (KDD’00). Boston, M A, U.S.A., pp. 355–359. 2 000. 

14. Nanopoulos, A . and M anolopoulos, Y . Finding general ized path patterns for web 
log data m ining. Data and Knowledge Engineering, 37 (3):243–266. 2000. 

15. Han, J. and Kam ber, M . Data M ining: Concepts and Te chniques. M organ 
Kaufm ann Publishers. Han, J., Pei, J., M ortazavi-As l, B., Chen, Q ., Dayal, U ., and 
Hsu, M .-C. 2000. 

16. Srivastava, J., Cooley, R., Deshpande, M ., and Tan,  P. W eb usage m ining: 
D iscovery and applications of usage patterns from  w eb data. SIGKDD 
Explorations, Vol. 1. Shaffer, C.A. A  Practical Int roduction to Data Structures 
and A lgorithm  Analysis. Prentice Hall Inc. 2000. 

17. Spiliopoulou, M . The laborious way from  data m ining  to web m ining. Journal of 
Com puter System s Science and Engineering, Special I ssue on Sem antics of the 
W eb, 14:113–126. 1999.  

18. M . Spiliopoulou, L. C. Faulstich, and K. W inkler. A  Data M iner Analyzing the 
Navigational Behaviour of W eb Users. In Proceedings  of the W orkshop on 
M achine Learning in User M odelling of the ACAI'99 I nternational Conference, 
Creta, Greece, July 1999. 

 


