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Abstract

A large number of FFT algorithms have been developed over the years, notably the Radix-2,
Radix-4, Split- Radix, Fast Hartley Transform (FHT),, Quick Fourier Transform (QFT),, and the
Decimation-in-Time-Frequency (DITF), algorithms. How these algorithms fare in comparison
with each other is of considerable interest to developers of signal processing technology. In this
paper, we present a general analysis and comparison of the aforementioned algorithms. The
analysis of each algorithm includes the number of mathematical operations, computation time
and memory requirements. The results indicate that the FHT is the overall best algorithm on all
platforms, offering the fastest execution time and requiring reasonably small amounts of memory.

1. Introduction: The first major breakthrough in implementation aisE Fourier Transform
(FFT), algorithms was the Cooley-Tukey [1] algamithdeveloped in the mid-1960s, which
reduced the complexity of a Discrete Fourier Tramaffrom O(N2), to O(N-logN), At that time,
this was a substantial saving for even the simgesapplications. Since then, a large number of
FFT algorithms have been developed. The Cooley-lakgorithm became known as the Radix-
2 algorithm and was shortly followed by the RadjpRadix-4, andMixed Radix algorithms [8].
Further research led to the Fast Hartley Transf@#hiT), [2,3,4] and the Split Radix (SRFFT),
[5] algorithms. Recently, two new algorithms haweeeged: the Quick Fourier Transform (QFT),
[6] and the Decimation-In-Time-Frequency (DITF)gaidithm [7]. In this paper we provide a
comparison of several contemporary FFT algorithifie criteria used are the operations count,
memory usage and computation time. We chose thawfiolg algorithms for our analysis: Radix-
2 (RAD2),, Radix-4 (RAD4),, SRFFT, FHT, QFT and BIT

2. Review of FFT algorithms. The basic principle behind most Radixbased FFTrétguos is to
exploit the symmetry properties of a complex expia that is the cornerstone of the Discrete
Fourier Transform (DFT), These algorithms dividee throblem into similar sub-problems
(butterfly computations), and achieve a reductioncomputational complexity. All Radix
algorithms are similar in structure differing ontythe core computation of the butterflies. The
FHT differs from the other algorithms in that itegsa real kernel, as opposed to the complex
exponential kernel used by the Radix algorithmse THFT postpones the complex arithmetic to
the last stage in the computation cycle by sepgratanputing the Discrete Cosine Transform
(DCT), and the Discrete Sine Transform (DST), TH&Malgorithm uses both the Decimation-
In-Time (DIT), and Decimation-In-Frequency (DIF)afneworks for separate parts of the
computation to achieve a reduction in the companati complexity.

Radix-2 Decimation in Frequency Algorithm: The RAD2 DIF algorithm is obtained by
using the divide-and conquer approach to the Deblpm. The DFT computation is initially
split into two summations, one of which involveg ttum over the first data points and the
other over the next data points, resulting in[1],12
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the above equation can be simplified to
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The same computational procedure can be repeateuagth decimation of the N/2- point DFTs
X(2k), and X(2k+1), The entire process involwes log2N stages with each stage involving N/2
butterflies. Thus the RAD2 algorithm involves Né&2N complex multiplications and N-log2N
complex additions, or a total of 5N-log2N floatimgint operations. Observe that the output of the
whole process is out-of-order and requires a bitngal operation to place the frequency samples
in the correct order.

2.2 Radix-4 Algorithm: The RAD4 algorithm is very similar to the RAD2 atgbm in concept.
Instead of dividing the DFT computation into halessin RAD2, a four-way split is used. The N-
point input sequence is split into four subsequeng@lin),, x(4n+1), , x(4n+2), and x(4n+3), ,
where n=0,1,...N/4-1. Then,
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1p=0,1,2,3 &m,q=0,1,..N/4-1. (8)

the matrix formulation of the butterfly becomes
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The decimation process is similar to the RAD2 atpar, and uses=log4N stages, where each
stage has N/4 butterflies. TheRAD4 butterfly invedv8 complex additions and 3 complex
multiplications, or a total of 34 floating point @@tions. Thus, the total number of floating point
operations involved in the RAD4 computation of aspdint DFT is 4.25l0g2N, which is 15%
less than the corresponding value for the RAD2rélyo.

2.3. Split-Radix Algorithm: Standard RAD2 algorithms are based on the syntloésigo half-
length DFTs and similarly RAD4 algorithms are basadhe fast synthesis of four quarter-length
DFTs. The SRFFT algorithm is based on the syntt@sime half-length DFT together with two
guarter-length DFTs. This is possible becausehé RAD2 computations, the even-indexed
points can be computed independent of the odd edigoints. The SRFFT algorithm uses the
RAD4 algorithm to compute the odd numbered poiHisnce, the N—point DFT is decomposed
into one N/2-point DFT and two N/4 -point DFTs.
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An N-point DFT is obtained by successive use ofs¢ghdecompositions. Here we treat the
computational process as a RAD2 algorithm with thenecessary intermediate DFT
computations eliminated. An analysis of the bulgestructures [15] for the SRFFT algorithm
reveals that approximately 4N-log2N computatiores required as compared to 4.25log2N for
RAD4 and 5N-log2N for RAD2 algorithms.

2.4. Fast Hartley Transform: The main difference between the DFT computatiomsipusly
discussed and theDiscrete Hartley Transform (Dh#he core kernel [2,14]. For the DHT, the
kernel is real unlike the complex exponential kérakthe DFT. The DHT coefficient is
expressed in terms of the input data points as[13]

X(k) =XM1 x(n) - [cos {:2;:}{] + sin{zr:kj] (14
This results in the replacement of complex multgtions in a DFT by real multiplications in a
DHT. For complex data, each complex multiplication the summation requires four real




multiplications and two real additions using theTDRFFor the DHT, this computation involves

only two real multiplications and one real additiofhere exists an inexpensive mapping of
coefficients from the Hartley domain to the Fouritzmain, which is required to convert the
output of a DHT to the traditional DFT coefficienEguation (15), relates the DFT coefficients to
the DHT coefficients for an N-point DFT computation

Re(DFT(k)) =

DHT (k)+ DHT (N—k)
2
__ DHT (k)— DHT (N—k)

In(DFT(k)) = - (15)

The FHT evolved from principles similar to thosedisn the RAD2 algorithm to compute DHT
coefficients efficiently[13]. It is intuitively sipler and faster than the FFT algorithms as the
number of computations reduces drastically wherreptace all complex computations by real
computations. Similar to other recursive Radix &tpms, the next higher order FHT can be
obtained by combining two identical preceding loweder FHTs. In fact all Radix-based
algorithms used in FFT implementations can be eggld FHT computations [16]. For N=2, the
Hartley transform can

be represented in & [x(o) 1 17 Tx(0) _
matrix form as L;'('i 1] N [1 —1] ' Lm &8
Following a similar procedure for., we get
the matrix formulation.
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A closer look at this matrix product and a comparisvith the matrix for N=2 reveals that the
matrix for N=4 is composed of sub-matrices of therf of the matrix for N=2. Thus a DHT of
order 4 can be computed directly from a DHT of or2leThis idea can be extended to any order
which is a power of 2 [4]. It is also worth notitlgat the Hartley Transform is a bilateral
transform, i.e. the same functional form can beddee both the forward and inverse transforms.
This is an added advantage of the FHT over oth&rdiforithms.

25. Quick Fourier Transform: We have seen that the Radix-based algorithms exibiei
periodic properties of the cosine and sine funetidn the Quick Fourier Transform (QFT),
algorithm, the symmetry properties of these funcdiare used to derive an efficient algorithm.
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We define an N+1 -point DCT as
Xocr(k)= Ti=p x(n)cos ==, k=0,1,..,N (20)

An N-1-point DST can also be similarly defined as
Xosr(k) = TV x(n)sin ”—f k=01,..,N (21)

We can divide an N-point input sequence into itsreand odd parts as

X0 = ()
x(k=x(f)+xoN-5.k=1.2._N/2-1and
XN/ 2} =N/ D) (22

xolk) =x(k) —xiN—-Fk) k=12, N2—-1 (23)
Using the above sequences and properties in Equidiove can define an N-point DFT as
Xik) =Xper (k) —j Xpsr (F),

XIN-k)=Xper (k) + jAps k). k=1.2.... N/2—1
(24)
In order to derive a recursive formulation of DQTddDST computations, we define a new
sequencexe as

Y(B)y=x(k) +x(N-k). k=12...N/2—-1 (23

Also, theN/2th point of this sequence is the same as thdteobtiginal sequence. Thus we can
formulate the recursive DCT for the even numbe@idtp as

DCTR2k. W+ 1. x)=DCT( k& g+1. x)
where k=1.2... . WN/2—1 (26)
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We can define a recursive equation for the odd PGifits using a new sequenaedefined as
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A similar recursive formulation can be derived floe DST using symmetry properties of the sine
function which results in

DST(2k. N—1,x)=DST (k. %-1. x,) and
DST(2k+1,N—1,x)=

DST (k g-l. x.) + DST (k+1, g-],.n;s} (30)

where k =1,2...N/2-1.Since the complex operations occur only in thst stage of the
computation where the DCT and DST are combinedguSaguation 24, the QFT is well suited for
operation on real data. The number of operationgiired to perform arN- point QFT is
1IN/2-log\N—- 27N/4+2 [7].This, however, does not include the cdstamputing the odd and
even parts of the data sequence at each stalge obtmputation.

2.6. Decimation-In-Time-Frequency (DITF), Algorithm: The DITF algorithm is based on the
observation that in a DIF implementation of a RABRorithm, most of the computations
(especially complex multiplications), are perforndging the initial stages of the algorithm. In
the DIT implementation of the RAD2 algorithm, thengputations are concentrated towards the
final stages of the algorithm. Thus, starting vilte DIT implementation and then shifting to the
DIF implementation at some transition stage inigly seems to be a computation saving
process. Equations (3), and (4), define the DIF RADmputation. The DIT RAD2 computation
is defined as

1 1
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Note that the first summation in the above equat®rhe N/2-point DFT of the sequence
comprised of the even-numbered points of the asigiequence and the second summation is the
N/2-point DFT of the sequence comprised of the oddbrered points of the original sequence.
The transition stage consists of a conversion fiteerDIT coefficients to the DIF coefficients,

DIF(k) = Wy -DIT(k) (32)
wherep is the index of the set to whidtbelongs andj is the position ok in that set. The indices
of each set need to be bit reversed. The total rumibreal multiplications involved in the DITF
computation is 2N-logN-10N+8N/2s+8.2s- 8, wheiis the transition stage. On minimizing this
expression, we get the optimal transition stagerfimimum number of multiplications as
logN

2
3. Benchmarking criteria: Most preceding FFT complexity studies have beerdeoted on

special purpose hardware such as digital signatgsging (DSP), chips [9,10]. Typically, the
primary benchmarking criteria have been the nunobenathematical operations (multiplications
and additions), and/or the overall computationegpelhe efficiency of an algorithm is most
influenced by the arithmetic complexity, usuallypexssed in terms of a count of real
multiplications and additions. However, on gengratpose computers this is not a very good




benchmark and other factors need to be considevegell. For instance, the issue of memory
usage is very important for memory constrainediapfons.

3.1. Number of Computations. Since many general purposes CPUs have significdiffgrent
speeds on floating point and integer operationsdeaded to individually account for floating
point and integer arithmetic. It is a well knowrttfghat most new architectures compute floating
point operations more efficiently than integer @tiens [19,21]. Also, most indexing and loop
control is done using integer arithmetic. Therefihre integer operations count directly measures
the cost of indexing and loop control. Many FFToaidhms require a large number of division-
by-two operations which is efficiently accomplishiegd using a binary shift operator. To account
for this common operation, we include a count afby shifts in our benchmarks.

3.2. Computation Speed: In most present-day applications for general puepmsnputers, with
easy availability of faster CPUs and memory nohgei primary constraint, the fastest algorithm
is by far treated as the best algorithm. Thus,rarson choice to rank order algorithms is by their
computation speed.

3.3. Memory Usage: One of the classic trade-offs seen in algorithmvetiment is that of
memory usage versus speed. In most portable spyoaéssing applications, the FFT is a core
computational component. However, few applicaticas afford a large memory space for
evaluating FFTs. While memory usage is importamt fgpecification of hardware, memory
accesses also account for a significant portionosfiputation time. This is attributed to cache
misses, swapping and other paging effects. Thdsetgefare more prominent when computing
higher order FFTs (typically over 4K points), Thedeservations prompted us to include memory
usage as one of the yardsticks in judging the gffecess of the various FFT algorithms.

4. Benchmarking results and analysis. Each of the algorithms was implemented under a
common framework using common functions for operatisuch as bit-reversal and lookup table
generation so that differences in performance coeldttributed solely to the efficiency of the
algorithms. Following this, we comprehensively demarked each algorithm according to the
criteria discussed in the previous section.

4.1. Computation Speed: Computation speed is typically the most prominemteat of an FFT
algorithm in current DSP applications. The compataspeed of an algorithm for large data sizes
can often be heavily dependent on the clock spRB&dy size, cache size and the operating
system. Hence, these factors must be taken intmuatcWe evaluated that the computation time
of the worst algorithm (DITF), is more than thrémds greater than that of the best algorithm
(FHT), It has been consistently observed in ourcherarks that the FHT is the most efficient
algorithm in terms of computation speed. Table dwshthe variation in performance of these
algorithms as a function of the FFT order. The grenfance is clearly affected by the amount of
RAM and cache. As expected, the effect is more quooed for higher order FFTs where cache
misses become common. The performance of the GRPUBoating point operations versus
integer operations is significant as well.

4.2. Number of Computations. The number of arithmetic computations has beetr#uitional

measure of algorithmic efficiency. The numbers pémtions required by each algorithm for a
1024-point real DFT are displayed in Table 2. Weesbe that the faster algorithms require
performing a smaller number of computations. Howgetleere is a trade-off between integer
operations and floating point operations. Savimgfidating point operations can be achieved at
the cost of increasing the number of integer opmrat An example of this is seen in the
excessive number of integer additions in the QRThé QFT implementation, the DCT and DST



recursions are implemented by accessing pointees dommon workspace. This results in the
large number of integer operations. The large nusnb&operations for the DITF algorithm are
attributed to the bit-reversal process at varidages of the computation. This aspect seems to
have been overlooked in previous evaluations [D8krall, the FHT and the SRFFT are the best
in terms of effectively using computations, whichrislates to greater computation speed. The
main drawback of the FHT is that the complex FHTamputed via two real FHT computations.
The QFT also uses a similar methodology. The nurobeomputations doubles when moving
from real data to complex data using these algosthThe corresponding change for the other
algorithms is insignificant.

4.3. Memory Usage: One of the key issues in portable applications énary usage. Table 3
shows the memory usage profile of different aldoni$ for a 1024 point FFT. We see from Table
3 that the RAD2 algorithm is the most memory efiti algorithm, and the QFT is the least. In
the case of the QFT, this is due to the large vepkce required to perform the recursions in the
DCT and the DST algorithms. The FHT is the mosfficient in terms of the executable size.
Notice that, as was expected, the executable sizegood measure of the complexity of the
algorithm with the FHT being the most complex amel RAD2 the least complex algorithm.

5. Conclusions. The existence of an abundance of algorithms for [EBMmputations and an even
greater number of their implementations calls fmoamprehensive benchmark which teases out
the implementation-specific differences and compahe algorithms directly. We have tried to
achieve this objective by implementing algorithmsai very consistent framework. Our results
indicate that the overall best algorithm for DFThgutations is the FHT algorithm. This has
been, and will likely continue to be, a point ofjament for many years [17, 18, 20, 22, 23].
Another feature in favor of the FHT is its bilatefermulation. UnlikeDFT algorithms, FHT has
the same functional form for both its forward anderse transforms. The FHT is the fastest
algorithm on all platforms with a reasonable dymamemory requirement. However, it is the
most inefficient in terms of static memory usage#isured in terms of the executable size), If an
FFT algorithm needs to be chosen solely on theslEsstatic memory requirements, the RAD-2
algorithm is the still the best, owing to its simpmplementation. The SRFFT and the FHT are
comparable in terms of the number of computationsaae the most efficient.

Algorithm FET order

16 | 64 | 256 | 1024 | 4096 | 16384
RAD2 20 | 60 | 260 | 1960 | 6800 | 30500
RAD4 200 | 60 | 300 | 1800 | 6940 | 2900
SRFFT 20 |40 | 140 | 660 | 3700 | 17260
FHT 20 | 40 | 120 | 560 | 3240 | 14020
QFT 20 | 40 | 180 | 1020 | 5460 | 27760
DITF 20 | 80 | 380 | 1780 | 8780 | 40200

Table 1. Computation time (in microseconds),of various algorithms.



Algorith Float Float | Integer | Integr | Bina
m Adds Mults | Adds Mults | ry
Shifs
RAD2 14336 | 20480 | 19450 2084 1023
RAD4 8960 14336 [ 12902 3071 277
SRITT 5861 5522 12664 2542 1988
FHT 7420 8341 3235 2048 12
QFT 9026 2580 29784 1048 144
DITF 14400 | 17664 | 20333 1076 1074

Table 2: Number of computationsinvolved in computing a 1024-point FFT.

Algorithm Memory Usage (Bytes)
RAD2 72240

RAD4 72536

SREFT 72508

FHT 72652

QFT 122072

DITF 78632

Table 3: Memory usage in computing a 1024-point FFT.
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