NETWORK SIMULATION USING NCTUns

Ankit Verma*
Shashi Singh*
Meenakshi Vyas*

1. Introduction: Network simulator is software which is very helpfabl to develop, test, and
diagnose any network protocol. To implement anydkiof network with any kind of link
bandwidth, propagations delay, routers etc we daeed to set up the actual network hence it is
very economical and the results obtained are e#sianalyze. A simulator needs to simulate
various networking devices, application progranetywork utility programs hence developing a
simulator need great efforts.

To overcome some of the limitation of traditionahslatorsSY. Wang proposed a simulation
methodology which has two desirable propertieolsvs.

» It uses the real-life UNIX TCP/IP protocol stackallife network application programs,
and real-life network utility programs. To generatore accurate result similar to real
life implementation..

e Second, it lets the system default UNIX POSIX ARY.(the standard UNIX system call
interface), be provided on every node in a simdlaetwork. Any real-life UNIX

» application program, either existing or to be depeHd, thus can run normally on any
node in a simulated network to generate traffic.[1]

2. The NCTUns Simulator: The NCTUns network simulator and emulator (NCTUisha high-
fidelity and extensible network simulator capabfesinulating various devices and protocols
used in both wired and wireless networks. The grestor of NCTUns is the Harvard network
simulator, which Wang authored in 1999.To overcalr@avbacks of this simulator, after joining
National Chiao Tung University (NCTU),, Taiwan irlfruary 2000, Prof. S.Y. Wang lead his
students to develop NCTUns since then. It suppoetsote simulations and concurrent
simulations. It uses an open-system architectuenéile protocol modules to be easily added to
the simulator. In addition, it has a highly-intetgch GUI environment for editing a network
topology, specifying network traffic, plotting perfnance curves, configuring the protocol stack
used inside a network node, and playing back afmabf logged packet transfers. NCTUns can
generate high-fidelity simulation results at highesds when the network traffic load is not
heavy. NCTUns was first released to the networkiognmunity on November 1, 2002. Its web
site is set up at http://NSL.csie.nctu.edu.tw/nsthiml. As of January 122010 Initially,
NCTUns was developed for the FreeBSD operatingesysiAs the Linux operating system is
getting popular, NCTUns now only supports the Limyperating system. Specifically, the version
of Linux distribution that NCTUns 6.0 currently sagts is Red Hat ‘s Fedora 1 2 with kernel
version 2.6.31.6. [2].

3. Features

e It can be easily used as an emulator.
» It supports distributed emulation of a large netwaver multiple machines

*Maharaja Ranjit Singh College of Professional 8ces, Indore, India

e It directly uses the real-life Linux TCP/IP protdcstack to generate high-fidelity
simulation results.

» It can run any real-life UNIX application progranm @ simulated node without any
modification.

» It supports remote and concurrent simulations.

» It provides complete and high-quality documentation
It is continuously supported, maintained, and imprb[3].

4. Applications:

* As a network-planning tool.

* As aresearch tool.

» As an application program performance evaluatioh to
» As an education tool [4].

5. Simulation Methodology NCTUns uses an innovative kernel re-entering watlogy to
perform network simulations.

Kernel re-entering simulation methodology

It uses the existing real-world Linux protocol $#tao generate high-fidelity TCP/IP network
simulation results. In the case of Figure 1 thekpasent by the TCP sender passes through the
kernel two times. This is the property of the kémgeentering simulation methodology. By re-
entering the kernel multiple times, we can creatdlasion that a packet passes through several
different hosts (i.e., the packet thinks that isg®s through several different TCP/IP protocol
stack), Actually, the packet is always in the sanahine and passes through the same TCP/IP
protocol stack.

Simulation Fnginc

TP TP
scnder C link O recwiver

TIser lewel

Kermel T.ewel

TR IE T T
FProtococol stack Protocol staclks

Tunrmel Tuannel
Interface 1 Interface 2

Fig.1 Kernel re-entering simulation methodology

NCTUns uses a pseudo network device driver (caltedtunnel device driver in Linux), to
virtualized the function of a Network Interface @&NIC),, which is a set of standard driver
functions, such as open(),, read(),, write(),, &@s etc., that do not perform any real packet
transmission/reception operations and are not &gsdcwith any real NIC. A pseudo network
device driver contains a packet output queue, wischsed by NCTUns to temporarily store
packets to be transmitted. By properly configuring IP address and routing entries associated
with a pseudo network device driver, NCTUns makes tinux kernel think that a pseudo
network device driver created by NCTUns is a relél Nevice driver that controls a real NIC.

Simulation Engine

ARF		ARP
MAC 5023		MAC 85023
PHY		PHY
UDP Sender Sl LS
t j\ Receirer
User Space
TCPUDP I TCP/UDFIF
Profocol Stack Profocal Stack
Tunnel Interface 1 Tunnezl Inwerface 2
&
Kernezl Space

(b)

Fig.2 Protocol Stack

Consider a simple network shown in Fig. 2(a),, wh&rUDP sender program wants to transmit
data to a UDP receiver program. These 2 program®m2 different machines, connected via a
wired link. As shown in Fig. 2(b),, before startitlye simulation, NCTUns first creates two
tunnel device drivers to represent the NICs of #emding node and the receiving node,
respectively. It then sets up the IP addresse$asfet two tunnel devices. Suppose that the IP
address of tunnel device 1 (sender), is set td.1L0.and that of tunnel device 2 (receiver), is set
to 1.0.1.20, respectively. The next step is to pduber routing entries into the kernel routing
table so that the Linux kernel will in queue paskitat are originated from 1.0.1.10 and destined
to 1.0.1.20 into the output queue of tunnel devioelransmission.

After being forked, the UDP receiver process fursés standard socket APIs, such as socket(),
and bind(),, to create a socket structure thasi®eated with the IP address of tunnel device 2
(i.e., 1.0.1.20), It then uses the recvfrom(), ¢allwait for packets destined to the IP address
1.0.1.20. On the other hand, after being forked, WlDP sender process first uses the socket(),
call to create a socket structure and then usesethdto(), call to write a segment of data into the
socket send buffer, which is in the kernel spad¢e Written data segment will then pass through
(be processed by), the UDP/IP protocol stack andnmapsulated into an IP packet, which will
then be placed in the output queue of tunnel delicater on, the simulation engine reads these
packets out from the output queue of tunnel detiend simulates the processing of the ARP,
MAC-layer, and physical-layer protocols on nodeAter finding the MAC address for the IP
address of the packet’s destination node, the ARBute fills out the Ethernet header of the
packet and sends it down to the MAC module. Suslerading down process repeats until the
packet reaches the PHY module, which simulatesrémsmission/reception behavior of a packet
over a wired link. Finally, the PHY module of notiedelivers the packet to the PHY module of
node 2.

Upon receiving the packet, the PHY module of nodies? simulates the reception of this packet.
If it receives any other packet during the receptid this packet, it drops these two packets

because they are collided with each other. Othepwadter the reception of this packet has
elapsed, the node 2’'s PHY module delivers it ulhheoMAC module, which performs the MAC-
layer processing for this packet. Similar to thadieg down process on the transmitting node,
such a sending up process on the receiving nodeateuntil the received packet reaches the
ARP module, where the simulation engine writes plaeket into tunnel device 2. After this
operation is performed, the Linux kernel invokes tR-layer receiving routines to process this
packet as if this packet was received from a rd@&l. Nrollowing the normal processing for an
incoming IP packet, this packet is then dispatcteethe UDP layer. The UDP-layer receiving
routines then enquire this packet into the sockgdil receive buffer (which stores the packets
destined to the socket created by the UDP recgir@ress), Upon detecting the arrival of this
packet at the socket receive buffer, the Linux &kthen wakes up the UDP receiver process,
which then copies the data carried by this paaketstown memory space (i.e., return from the
recvfrom(), call),[5].

6. Components and Architecture of NCTUns: NCTUnepasl a distributed architecture. It is a
system comprising eight components.

First - A GUI program by which a user edits a netwtopology, configures the protocol modules
used inside a network node, specifies mobile nodesal location and moving paths, plots
performance graphs, plays back the animation afcket transfer trace, etc.

Second -The simulation engine program, which provides dasid useful simulation services
(e.g., event scheduling, timer management, andgba&nipulation, etc.), to protocol modules
Third - The set of various protocol modules, each of whitplements a specific protocol or
function (e.g., packet scheduling or buffer managyein

Fourth - The simulation job dispatcher program that canulgmeously manage and use
multiple simulation servers to increase the aggeeginulation throughput.

Fifth - Coordinator program. It registers itself with tbispatcher to join in the dispatcher’s
simulation server farm. Later on, when the staidie ©r busy), of the simulation server changes,
it will notify the dispatcher of the new status.i§ lenables the dispatcher to choose an available
simulation server from its simulation server faorservice a job.

Sixth - The kernel patches that need to be made to theekeource code so that a simulation
engine process can run on a UNIX machine correctly.

Seventh - Various real-life user-level application programs.

Eighth - Various user-level daemons that are run up fomthele simulation case for a simulated
network can be constructed automatically..[1,5,6,7]

The following figure shows the distributed architee of the NCTUns:

7. Simulation Modes According to users’ common needs, it groups theajmns of generating
a simulation/emulation case into four modes.

a), The Draw Topology modeiln this mode, one can insert network nodes, creetiwork links,

and specify the locations and moving paths of neobibdes. In addition, the GUI program
provides a complete tool kit for users to constrigad networks, which is fundamental to
wireless vehicular network simulations, where m&ap researchers are proposing to run P2P
applications.

Simulation :
Serv | -
erver ' GuUl Boston
1

Simulation

Serv | ~
erver \ NCTU —_‘I'__@ Rome
Simulation

Dispatcher |
Server M fu———l I_» !
1 .
Simulation :E Paris
1

Server H

imulation Back_;;‘ound : Gul Tokyo
Job Queue

Server H

Simulation Service Center

Kernel Modifications +
Simulation Engine +
Protocol Modules +
Coordinator

A Simulation Server ==

Fig.3 Distributed Architecture of NCTUns

b), The Edit Property mode: In this mode, one can double-click the icon of amoek node to
configure its properties (e.g., the network protatack used in this node, the applications to be
run on this node during simulation, and other patans),

¢), The Run Simulation mode:In this mode, the GUI program provides users wittbmplete
set of commands tetart/pause/stop a simulation. One can easily control the progrefss o
simulation by simply pressing a button on the Gutiteol panel.

d), The Play Back mode:After a simulation is finished, the GUI program Wwalutomatically
switch itself into the Play Back mode and read paeket trace file generated during the
simulation. In this mode, one can use the GUI mogrto replay a node’s packet
transmission/reception operations in an animatethera 5].

8. Generate Infrastructure Mobile Nodes' IP and MAC Address: It's easy to build a network
topology using Topology Editor. Suppose we woulkelito establish a simulation with
infrastructure wireless network. After building tihhetwork topology, next step is to generate
mobile nodes' IP and MAC address. Following is pinecedure to assign mobile nodes' IP:
1.Switch the operating mode from Draw Topology to ditE Property.
2.Select the mobile nodes and AP which are in thanmes subnet. (figure 4),
3. Menu->Tools->WLAN Mobile Nodes->Generate Infrasture Mobile Nodes' IP and Mac
Address(pic.2),

4. Set the subnet ID and Gateway IP. (pic.3),

Note: the total number of selected nodes must $etlean 255 because a subnet has at most 254
usable IP addresses (X.X.X.255 is used for brodihcps|8].

jak—
¥

Fig. 4:Example Network

w NCTURS 2.0 (01/10@ 005k froctpackageimy filesieeljexl.mpl ==

Dle Edt Seting Simeiaton Yew Help
N WLAK and GRS
| rsen WLAN Mobile Nodes
: 'l ‘JFF Caenerane Infra-stuchume Mohike Rodes 1P and Mac

g GRS BS
D E GRS GGSN

Manage Oplical Mebwork Probecion Rings and Edge Router i Edge Router Routing |

DS Dillsers

Impart Metvsark Traffic Application File

Plat Craph

-

Wiew Packet Trace
Show Packet Trace Faman

Generate Large Imemet-like Metwark
Dizplay All Mode and Link Dran Times

= [+

ENEED 3]
0 00000 000 000 G G2 [> 1] e faomim
Sefect Jnterface 10 1 1251.0,33.0) &

Fig.5 Creating the network

Set Subnet ID and Gateway IP

Subnet 1D:

Gateway |P:

1.0.2.1 |

oK Cancel

Fig. 6 Setting subnet id and gateway

9. Conclusion:NCTUns is a GUI based network simulator with loteafse in designing and
simulation network no doubt it is user friendly gombvide lot of advantages like conviviality of
interface. GUI environment for editing a networkpdtogy, specifying network traffic, plotting
performance curves, configuring the protocol stagéd inside a network node, and playing back
animations of logged packet transfers .It can aataally generate all related document for
simulation like graph routing table etc. .But tiesult obtained by this simulator vary as compare
to the real life result it also sometime generdddse result. It is not scalable but despite of thi
disadvantages. It is much popular among the relsearcAs the researches going on may its
limitation can be overcome by making some changesirmulator design as it allow to add
protocol module.

References

1.
2.

3.
4.
5

http://www.csie.nctu.edu.tw/~shieyuan/publicaticdST UNSDesign.pdf.
http://nsl10.csie.nctu.edu.tw/support/documentaN@T Uns4.0_ProtocolDeveloperMan
ual_07142007_final.pdf.

http://nsl.csie.nctu.edu.tw/nctuns.html.

http://nsl10.csie.nctu.edu.tw/

S.Y. Wang and R.M. Huang, NCTUns Tool for InnovatiNetwork Emulations, a
chapter of the Computer-Aided Design and Other Gding Research Developments
book, (ISBN: 978-1-60456-860-8, published by Noe#&8ce Publishers in 2009),

S.Y. Wang, C.C. Lin, and C.C. Huang, NCTUns ToolEvaluating the Performances of
Real-life P2P Applications, a chapter of the PeelPéer Networks, Security, Protocols,
and Applications book, (to be published by NovaeBce Publishers in 2009),

S.Y. Wang and R.M. Huang, NCTUns Tool for InnovatiNetwork Emulations, a
chapter of the Computer-Aided Design and Other Gding Research Developments
book, (ISBN: 978-1-60456-860-8, published by Noe#&8ce Publishers in 2009),
http://blog.roodo.com/crusor/archives/cat_91719lhtm

